scholarly journals Phosphorus-doped activated carbon catalyst for n-hexane dehydroaromatization reaction

2021 ◽  
pp. 106318
Author(s):  
Yong Li ◽  
Hong Zhao ◽  
Siyuan Chen ◽  
Shuhao Bao ◽  
Feifei Xing ◽  
...  
2020 ◽  
Vol 5 (9) ◽  
pp. 2690-2695 ◽  
Author(s):  
Ting Liu ◽  
Muhoza Jean Pierre ◽  
Huiyu Li ◽  
Wenyu Wu ◽  
Maobing Tu ◽  
...  

2021 ◽  
Vol 1858 (1) ◽  
pp. 012088
Author(s):  
Didi Dwi Anggoro ◽  
Luqman Buchori ◽  
Mohamad Djaeni ◽  
Ratnawati ◽  
Diah Susetyo Retnowati ◽  
...  

1984 ◽  
Vol 25 (1-2) ◽  
pp. 11-15 ◽  
Author(s):  
N. Yamaguchi ◽  
A. Kobayashi ◽  
T. Sodesawa ◽  
F. Nozaki

2021 ◽  
Vol 16 (1) ◽  
pp. 205-213
Author(s):  
Viqhi Aswie ◽  
Lailatul Qadariyah ◽  
Mahfud Mahfud

Microalgae, as a potential raw material for biofuel, has several advantages compared to other biomass. One effective way to convert microalgae into biofuel is by thermal cracking or pyrolysis, and using a catalyst or not. So far, studies on the use of microalgae, that are converted into biofuels, is still use highly concentrated catalysts in packed bed reactors, which is not economical. Therefore, the aim of this study is to convert Chlorella sp. into biofuels with conventional pyrolysis without and using an activated carbon catalyst using packed bed reactor with bubble column. The reaction temperature is 400–600 °C, pyrolysis time is 1–4 hours, and the active carbon catalyst concentration is 0–2%. The 200 grams of Chlorella sp. and the catalyst was mixed in a fixed bed reactor under vacuum (−3 mm H20) condition. Next, we set the reaction temperature. When the temperature was reached, the pyrolysis was begun. After certain time was reached, the pyrolysis produced a liquid oil product. Oil products are measured for density and viscosity. The results showed that the conventional pyrolysis succeeded in converting microalgae Chlorella sp. into liquid biofuels. The highest yield of total liquid oil is obtained 50.2 % (heavy fraction yield, 43.75% and light fraction yield, 6.44%) at the highest conditions which was obtained with 1% activated carbon at a temperature and pyrolysis time of 3 hours. Physical properties of liquid biofuel are density of 0.88 kg/m3 and viscosity of 5.79 cSt. This physical properties are within the range of the national biodiesel standard SNI 7182-2012. The packed bed reactor completed with bubble column is the best choice for converting biofuel from microalgae, because it gives different fractions, so that it is easier to process further to the commercial biofuel stage. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


2019 ◽  
Vol 7 (2) ◽  
pp. 164-168
Author(s):  
Shinta Amelia ◽  
Wahyudi Budi Sediawan ◽  
Zahrul Mufrodi ◽  
Teguh Ariyanto

Methylene blue is one of the dyes in textile industries which has a negative impact on the environment. This compound is very stable, so it is difficult to degrade naturally. Methylene blue can be harmful to the environment if it is in a very large concentration, because it can increase the value of Chemical Oxygen Demand (COD) which can damage the balance of environment ecosystem. Adsorption method by using activated carbon as the adsorbent is one of the most efficient and effective techniques in dye removal due to its large adsorption capacity. However, the adsorption method using activated carbon only removes the pollutant compounds to other media or phases. Other method that can be used includes Advanced Oxidation Processes (AOPs). This method has the advantage of being able to degrade harmful compounds in the waste through oxidation (oxidative degradation) processes. One method of AOPs is the process by using Fenton reagents. This study was aimed to prepare and characterize iron oxide/porous activated carbon catalyst. The type of porous activated carbon used was carbon from biomass derived carbon with microporous character. This biomass carbon is obtained from renewable natural products, namely coconut shell.The kinetics and adsorption models in the material will be derived and evaluated from the research data. Based on the research, it can be concluded that catalytic degradation is very effective for degradation of dye wastewater. Methylene blue degradation increases with the use of Fe2O3/activated carbon catalyst and the addition of hydrogen peroxide as the Fenton reagent. In addition, the pore structure difference in the catalyst also had a significant effect on the methylene blue degradation reaction resulting in increased capacity of methylene blue degradation reactions.


2017 ◽  
Vol 5 (11) ◽  
pp. 10815-10825 ◽  
Author(s):  
Xiao-ning Ye ◽  
Qiang Lu ◽  
Xin Wang ◽  
Hao-qiang Guo ◽  
Min-shu Cui ◽  
...  

2020 ◽  
Vol 5 (9) ◽  
pp. 1783-1790
Author(s):  
Seungdo Yang ◽  
Hyungjoo Kim ◽  
Do Heui Kim

Hydrogenolysis of alginic acid, derived from macroalgae, was performed over Ru–Ni supported on activated carbon catalyst using NaOH as basic promoter to produce glycols.


Sign in / Sign up

Export Citation Format

Share Document