Changes in soil nutrient and enzyme activities under different vegetations in the Loess Plateau area, Northwest China

CATENA ◽  
2012 ◽  
Vol 92 ◽  
pp. 186-195 ◽  
Author(s):  
Bing Wang ◽  
Sha Xue ◽  
Guo Bin Liu ◽  
Guang Hui Zhang ◽  
Gary Li ◽  
...  
2016 ◽  
Author(s):  
Haixin Zhang ◽  
Quanchao Zeng ◽  
Shaoshan An ◽  
Yanghong Dong ◽  
Frédéric Darboux

Abstract. Vegetation restoration was effective way of protecting soil erosion and water conservation on the Loess Plateau. Carbon fractions and enzyme activities were sensitive parameters for assessment of soil remediation through revegetation. Forest, forest steppe and grassland soils were collected at 0–5 cm and 5–20 cm soil layers in Yanhe watershed, Shaanxi Province. Urease, sucrase, alkaline phosphatase, soil organic carbon (SOC), microbial biomass carbon (MBC), easily oxidized organic carbon (EOC) and dissolved organic carbon (DOC) were measured. The results showed that carbon fraction contents and enzyme activities in the same soil layer followed the order that forest was higher than others. Carbon fraction contents and enzyme activities appeared that the 0–5 cm was higher than 5–20 cm soil layer. In addition, correlation analysis showed that urease activity was related to SOC, MBC, EOC and DOC at 0–5 cm layer; it was correlated with SOC, MBC and EOC at 5–20 cm layer. Sucrase activity had significant positive relationship with SOC, MBC and EOC. Alkaline phosphatase activity was related to EOC and DOC at 0–5 cm layer; it was correlated with MBC and EOC at 5–20 cm layer. The CCA reflected the relationship between sucrase activity and SOC. The contributions from the various forms of carbon fractions and enzyme activities as evaluated by the canonical coefficient of CV were on the order of SOC > DOC > MBC > EOC; sucrase > urease > alkaline phosphatase. Vegetation type was an important factor influencing the variation of soil enzyme activities and carbon fractions on the Loess Plateau.


2011 ◽  
Vol 91 (6) ◽  
pp. 925-934 ◽  
Author(s):  
Tianzeng Liu ◽  
Zhibiao Nan ◽  
Fujiang Hou

Liu, T., Nan, Z. and Hou, F. 2011. Culturable autotrophic ammonia-oxidizing bacteria population and nitrification potential in a sheep grazing intensity gradient in a grassland on the Loess Plateau of Northwest China. Can. J. Soil Sci. 91: 925–934. Grazing is known to enhance the activity of soil microbial communities in many types of grasslands; however, the potential impacts of rotational grazing activity on soil microbial functional groups remain poorly understood. We investigated the effects of 9 yr of rotational grazing by livestock on culturable autotrophic ammonia-oxidizing bacteria (AOB) population size, nitrification potential and soil properties in a semi-arid grassland of the Loess Plateau in Northwest China. Three stocking rate treatments of 2.7, 5.3 and 8.7 wether lambs ha−1were evaluated in geographically separated paddocks. Grazing increased nitrification potential and culturable AOB populations compared with ungrazed treatments. Ammonia-oxidizing bacteria populations increased from 155 bacteria g−1dry soil with 0 sheep ha−1to 16 218 bacteria g−1dry soil with 8.7 sheep ha−1. Grazing led to an increase in population of AOB at 0–10 cm soil depth, but had no effect on AOB at 10–20 cm soil depth. Nitrification potential increased from 1.21 mg NO3-N kg−1soil d−1in ungrazed treatments to 2.86 mg NO3-N kg−1soil d−1at the highest stocking rate. Soil ammonium and nitrate concentrations increased; however, total soil nitrogen and soil moisture content decreased with increased stocking rate for both sampling depths (0–10 cm and 10–20 cm). Soil organic matter was not affected by grazing treatments. Soil nitrification potential and the size of culturable AOB populations were dependent on grazing intensity, soil depth and season. This information is potentially important for the optimal selection of stocking rate for grazed ecosystems.


2018 ◽  
Vol 18 (5) ◽  
pp. 1971-1980 ◽  
Author(s):  
Li Xiao ◽  
Yimei Huang ◽  
Quanchao Zeng ◽  
Junfeng Zhao ◽  
Junying Zhou

2011 ◽  
Vol 4 (6) ◽  
pp. 344-348 ◽  
Author(s):  
Ling Xiao-Lu ◽  
Guo Wei-Dong ◽  
Zhao Qian-Fei ◽  
Zhang Bei-Dou

Author(s):  
Guoyin Wang ◽  
Jianping Huang ◽  
Weidong Guo ◽  
Jinqing Zuo ◽  
Jiemin Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document