Influence of land use and land cover patterns on seasonal water quality at multi-spatial scales

CATENA ◽  
2017 ◽  
Vol 151 ◽  
pp. 182-190 ◽  
Author(s):  
Peng Shi ◽  
Yan Zhang ◽  
Zhanbin Li ◽  
Peng Li ◽  
Guoce Xu
2019 ◽  
Vol 72 ◽  
pp. 1-17 ◽  
Author(s):  
Britta Schmalz ◽  
Marion Kruse

Knowledge of the interactions of hydrological processes with the landscape are important to understand variations in basic hydrological data for the comprehensive management of basins. Land cover and land use is one essential factor in the assessment of such management problems. In this study in a representative German basin, available land cover and land use data is analysed in correspondence with available hydrological measuring data.The aim of this study is to analyse the relationships between hydrological data and land use and to obtain a monitoring strategy which allows a valuable support to a comprehensive management of river basins.Two spatial scales, the basin Gersprenz and its subbasin Fischbach, are described in detail regarding the variations in electrical conductivity (EC) as a parameter of water quality with high resolution field data from the state-wide monitoring network (12 stations) as well as from own research monitoring (12 stations). The results show that water quality, using EC as an indicator, can be related to land use pattern. From stream source to mouth, there is an increase in anthropogenic impacts and the EC values show an increasing tendency in downstream direction. This anthropogenic impact is due to agricultural use, settlements, commerce and industry areas, and discharges of waste water. The hydrological monitoring will be continued in the future to give the possibility to assess long-term variations on different spatial and temporal scales.


2014 ◽  
Vol 42 (10) ◽  
pp. 1423-1432 ◽  
Author(s):  
Yin Ye ◽  
Xingyuan He ◽  
Wei Chen ◽  
Jing Yao ◽  
Shuai Yu ◽  
...  

2006 ◽  
Vol 174 (1-4) ◽  
pp. 161-179 ◽  
Author(s):  
T. Tsegaye ◽  
D. Sheppard ◽  
K. R. Islam ◽  
W. Tadesse ◽  
A. Atalay ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Juliana Nazareth de Lana ◽  
Márcio de Oliveira ◽  
Vanessa Romario de Paula ◽  
Cézar Henrique Barra Rocha

Changes in the land use and land cover in areas adjacent to water reservoirs directly affect the quality of this water. This research presents a study on the water quality in the basin of one of the most important public water supply reservoirs in the city of Juiz de Fora, Minas Gerais. The main objective of this study was to analyze the behavior of limnological parameters and the correlation with land use and land cover in the contribution basin of the Doutor João Penido reservoir (CBJPR). The methodology was based on the analysis of water quality parameters, related to water samples collected from 2012 to 2015. Six sampling points were chosen from different locations: spring, medium course, main tributaries of the reservoir and the reservoir catchment. The parameters analyzed were turbidity, total solids (TS), oxygen consumed (OC), dissolved oxygen (DO), electrical conductivity, total nitrogen (TN), total phosphorus (TP), E. Coli, temperature, pH and total dissolved solids (TDS). The Kendall’s tau test was used to analyze the correlations between the parameters of water quality, land use and land cover in the CBJPR. In general, measured parameters showed better results in spring and in reservoir catchment, showing a worse quality of the water along the tributaries and the dilution power of the reservoir. The correlations pointed to the need for protection and preservation of forests in strategic locations to ensure good water quality.


2021 ◽  
Author(s):  
Sneha Santy ◽  
Pradeep Mujumdar ◽  
Govindasamy Bala

<p>High industrial discharge, excessive agricultural activities, untreated sewage disposal make the Kanpur region one of the most contaminated stretches of the Ganga river. This study analyses water quality for the combined future climate change and land use land cover scenarios for mid-century for a 238km long Kanpur stretch of Ganga river. Climate change projections from 21 General Circulation Models for the scenarios of RCP 4.5 and RCP 8.5 are considered and Land use Land Cover (LULC) projections are made with QGIS software. Streamflow and water temperature are modelled using the HEC-HMS model and a Water-Air temperature regression model, respectively. Water quality analysis is simulated using the QUAL2K model in terms of nine water quality parameters, dissolved oxygen, biochemical oxygen demand (BOD), ammonia nitrogen, nitrate nitrogen, total nitrogen, organic phosphorus, inorganic phosphorus, total phosphorus and faecal coliform. Climate change impact alone is projected to result in degraded water quality in the future. Combined climate change and LULC change may further degrade water quality, especially at the study area's critical locations. Our study will provide guidance to policymakers to safeguard the Ganga river from further pollution.</p>


Sign in / Sign up

Export Citation Format

Share Document