Leguminous green manure enhances the soil organic nitrogen pool of cropland via disproportionate increase of nitrogen in particulate organic matter fractions

CATENA ◽  
2021 ◽  
Vol 207 ◽  
pp. 105574
Author(s):  
Zhiyuan Yao ◽  
Qian Xu ◽  
Yupei Chen ◽  
Na Liu ◽  
Yangyang Li ◽  
...  
2016 ◽  
Vol 96 ◽  
pp. 97-106 ◽  
Author(s):  
Antti-Jussi Kieloaho ◽  
Mari Pihlatie ◽  
Maria Dominguez Carrasco ◽  
Sanna Kanerva ◽  
Jevgeni Parshintsev ◽  
...  

2002 ◽  
Vol 51 (1-2) ◽  
pp. 79-88 ◽  
Author(s):  
János Lazányi ◽  
J. Loch ◽  
I. Jászberényi

Current concerns about soil and water quality deterioration, limited possibility of fossil fuels, loss of biodiversity, and in general the viability of rural communities urge to work out methods of sustainable agriculture in the Nyírség region of Hungary. Sustainable agriculture seeks solutions for environmental, economic and agricultural problems at the same time. The aim is to develop new production methods which provide the protection of nature. In sustainable agricultural systems the management of organic matters and, more widely, the whole nutrient management are based on the total self-sufficiency of the farm. The entire cycle of organic matter production and decomposition takes place within the farm boundaries and makes the farm an actual biological system. The rate of metabolism and the organic matter cycle are characteristic features of each farm and define their activity for a long time. Present investigation conducted in Westsik's crop rotation experiment has found a highly significant correlation between organic nitrogen extracted by 0.01 M CaCl 2 solution and potato yield. It has shown that soil organic nitrogen extracted by 0.01 M CaCl 2 solution is a reliable indicator of nitrogen available for mineralization during the growing season. When precise nitrogen fertilizer recommendations are required, the method can supply additional information for environmentally friendly, sustainable agriculture.


2004 ◽  
Vol 84 (2) ◽  
pp. 211-218 ◽  
Author(s):  
M. R. Carter ◽  
J. B. Sanderson ◽  
J. A. MacLeod

Potato (Solanum tuberosum L.) rotations often require organic amendments to maintain or improve soil organic matter levels and soil physical properties. However, beneficial effects of compost can be modified by time of application and rotating tillage depth and intensity. This study was conducted to evaluate the effect of compost applied once at different phases in a 3-yr potato, barley (Hordeum vulgare L.), and red clover (Trifolium pretense L.) rotation on a range of soil physical properties and organic matter fractions for a Charlottetown fine sandy loam (Orthic Humo-Ferric Podzol) in Prince Edward Island. Soil samples (0–8 cm) were obtained during the second cycle of the rotation (after two compost applications) in the fifth year of the experiment. Soil properties were influenced by compost addition, time of compost addition, and crop phase. Compost-induced benefits in soil physical properties (bulk density, macro-porosity, oxygen diffusion rate, shear vane strength, water-filled pore space) were mainly expressed in the red clover phase of the rotation, where soil density was relatively high compared to the barley and potato phases, due to the absence of tillage. The soil physical parameters, however, were mainly within their established optimum ranges for this soil type. Soil water content at −0.033 MPa was increased by compost in the potato phase, compared to the control. Soil organic matter was influenced by both compost and crop C inputs. Compost increased soil particulate organic matter (POM) in the potato and barley phases. Due to differences in crop residue inputs, compost-related differences in organic matter were minimized in the red clover phase of the rotation. Compost addition increased potato tuber yield above the maximum yield obtained with nitrogen application. This “non-nitrogen” compost yield effect may be related to the slight, but significant, improvement in soil water-holding capacity. Overall , compost application in an intensive 3-yr potato rotation provided benefits for potato productivity and in both soil physical and biological properties. Key words: Soil organic carbon, particulate organic matter, soil physical properties, compost amendment, potato yield, eastern Canada


2006 ◽  
pp. 17-23
Author(s):  
János Lazányi ◽  
Jakab Loch ◽  
István Henzsel

The best known and most remarkable example of continuous production in Hungary is the Westsik’s crop rotation experiment, which was established in 1929, and is still in use to study the effects of organic manure treatment, to develop models, and predict the likely effects of different cropping systems on soil properties and crop yields. In this respect, Westsik’s crop rotation experiment provides data of immediate value to farmers concerning the applications of green, straw and farmyard manure, as well as data sets for scientific research.Although commonly ignored, the release of nitrogen by root and green manure crops has a significant impact on soil organic matter turnover. The design of sustainable nitrogen management strategies requires a better understanding of the processes influencing nitrogen supplying capacity, as the effects of soil organic matter on soil productivity and crop yield are still very uncertain and require further research. In the treatments of Westsik’s crop rotation experiment, nutrients removed from soil through plant growth and harvesting are replaced either by fertilisers and/or organic manure. Data can be used to study the nitrogen supplying capacity of soil under different cropping systems and its effect on the 0.01 M CaCl2 soluble organic nitrogen content of soil.The aim of this paper is to present data on the nitrogen supplying capacity of brown forest soil from Westsik’s crop rotation experiment and to study its correlation with hundredth molar calcium-chloride soluble organic nitrogen. The main objective is to determine the effects of root and green manure crops on the nitrogen supplying capacity of soil under different cropping systems. The nitrogen supplying capacity was calculated as a difference of plant uptake, organic manure and fertiliser supply.The 0.01 M CaCl2 soluble organic nitrogen test has proved reliable for determining the nitrogen supplying capacity of soils. Brown forest soils are low in organic matter and in the F-1 fallow-rye-potato rotation, the nitrogen supplying capacity was 15.6 kg/ha/year. 0.01 M CaCl2 soluble organic nitrogen content was as low as 1.73 mg/kg soil. Roots and green manure increased the nitrogen supplying capacity of soil by more than 100%. This increase is caused by lupine, a legumes crop, which is very well adapted to the acidic soil conditions of the Nyírség region, and cultivated as a green or root manure crop to increase soil fertility.


1986 ◽  
Vol 107 (1) ◽  
pp. 215-217
Author(s):  
S. S. Prasad ◽  
A. K. Sarkar ◽  
N. P. Sinha

The major portion of nitrogen nutrition of flooded rice is met through the mineralization of organic forms of N present in soil. This is true even when fertilizer nitrogen is added. The mineralization of organic matter under waterlogged conditions is governed mainly by the prevailing chemical and biological conditions. In recent years, attempts have been made to characterize the products of hydrolysis of soil organic nitrogen (Asami & Hara, 1970; Shinde, 1978; Subba Rao & Ghosh, 1981). Information on different fractions of nitrogen in waterlogged rice soils is scanty.


Sign in / Sign up

Export Citation Format

Share Document