The effect of solvent in the sol–gel synthesis of visible light-activated, sulfur-doped TiO2 nanostructured porous films for water treatment

2014 ◽  
Vol 224 ◽  
pp. 132-139 ◽  
Author(s):  
Changseok Han ◽  
Joel Andersen ◽  
Vlassis Likodimos ◽  
Polycarpos Falaras ◽  
Jacob Linkugel ◽  
...  
Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 235
Author(s):  
Hayette Benkhennouche-Bouchene ◽  
Julien G. Mahy ◽  
Cédric Wolfs ◽  
Bénédicte Vertruyen ◽  
Dirk Poelman ◽  
...  

TiO2 prepared by a green aqueous sol–gel peptization process is co-doped with nitrogen and zirconium to improve and extend its photoactivity to the visible region. Two nitrogen precursors are used: urea and triethylamine; zirconium (IV) tert-butoxide is added as a source of zirconia. The N/Ti molar ratio is fixed regardless of the chosen nitrogen precursor while the quantity of zirconia is set to 0.7, 1.4, 2, or 2.8 mol%. The performance and physico-chemical properties of these materials are compared with the commercial Evonik P25 photocatalyst. For all doped and co-doped samples, TiO2 nanoparticles of 4 to 8 nm of size are formed of anatase-brookite phases, with a specific surface area between 125 and 280 m2 g−1 vs. 50 m2 g−1 for the commercial P25 photocatalyst. X-ray photoelectron (XPS) measurements show that nitrogen is incorporated into the TiO2 materials through Ti-O-N bonds allowing light absorption in the visible region. The XPS spectra of the Zr-(co)doped powders show the presence of TiO2-ZrO2 mixed oxide materials. Under visible light, the best co-doped sample gives a degradation of p-nitrophenol (PNP) equal to 70% instead of 25% with pure TiO2 and 10% with P25 under the same conditions. Similarly, the photocatalytic activity improved under UV/visible reaching 95% with the best sample compared to 50% with pure TiO2. This study suggests that N/Zr co-doped TiO2 nanoparticles can be produced in a safe and energy-efficient way while being markedly more active than state-of-the-art photocatalytic materials under visible light.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 210
Author(s):  
Dong Liu ◽  
Chunling Li ◽  
Congyue Zhao ◽  
Er Nie ◽  
Jianqiao Wang ◽  
...  

TiO2 develops a higher efficiency when doping Bi into it by increasing the visible light absorption and inhibiting the recombination of photogenerated charges. Herein, a highly efficient Bi doped TiO2 photoanode was fabricated via a one-step modified sol-gel method and a screen-printing technique for the anode of photocatalytic fuel cell (PFC). A maximum degradation rate of 91.2% of Rhodamine B (RhB) and of 89% after being repeated 5 times with only 2% lost reflected an enhanced PFC performance and demonstrated an excellent stability under visible-light irradiation. The excellent degradation performance was attributed to the enhanced visible-light response and decreased electron-hole recombination rate. Meanwhile, an excellent linear correlation was observed between the efficient photocurrent of PFC and the chemical oxygen demand of solution when RhB is sufficient.


2018 ◽  
Vol 5 (9) ◽  
pp. 095008 ◽  
Author(s):  
Azam Jafari ◽  
Siamak Khademi ◽  
Majid Farahmandjou

2018 ◽  
Vol 29 (14) ◽  
pp. 12351-12359 ◽  
Author(s):  
Behzad Koozegar Kaleji ◽  
Sajad Mirzaee ◽  
Soroush Ghahramani ◽  
Saba Rezaie ◽  
Navid Hosseinabadi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document