Dye decolorization test for the activity assessment of visible light photocatalysts: Realities and limitations

2014 ◽  
Vol 224 ◽  
pp. 21-28 ◽  
Author(s):  
Sugyeong Bae ◽  
Sujeong Kim ◽  
Seockheon Lee ◽  
Wonyong Choi
2006 ◽  
Vol 2006 ◽  
pp. 1-8 ◽  
Author(s):  
Beata Wawrzyniak ◽  
Antoni Waldemar Morawski ◽  
Beata Tryba

This study examined the photocatalytic degradation of phenol and azo dyes such as Reactive Red 198 and Direct Green 99 by photocatalysis over amorphous hydrated titanium dioxide (TiO2· H2O) obtained directly from the sulphate technology installation modified in gaseous ammonia atmosphere. The photocatalysts were used in the solution and coated on the glass plate after sandblasting. The highest rate of phenol degradation in the solution was obtained for catalysts calcinated at 700°C (6.5% wt.), and the highest rate of dye decolorization was found for catalysts calcinated at 500°C and 600°C (ca. 40%–45%). Some TOC measurements of dye solutions were performed to check the rate of mineralization. On the glass plate, the decomposition of DG99 on TiO2/N 500 contrary to TiO2-P25 proceeded completely after 120 hours of visible light irradiation. The prolongation of the time of irradiation did not enhance DG99 degradation on TiO2-P25. The decomposition of the Direct Green 99 on TiO2/N 500 coated on the glass plate covered with liquid glass took place up to 24 hours of irradiation. The liquid layer on the glass plate which was covered with the photocatalyst reduced its activity. The nitrogen doping during calcinations under ammonia atmosphere is a new way of obtaining a photocatalyst which could have a practical application in water treatment system under broadened solar light spectrum as well as self-cleaning coatings.


Author(s):  
Shawn Williams ◽  
Xiaodong Zhang ◽  
Susan Lamm ◽  
Jack Van’t Hof

The Scanning Transmission X-ray Microscope (STXM) is well suited for investigating metaphase chromosome structure. The absorption cross-section of soft x-rays having energies between the carbon and oxygen K edges (284 - 531 eV) is 6 - 9.5 times greater for organic specimens than for water, which permits one to examine unstained, wet biological specimens with resolution superior to that attainable using visible light. The attenuation length of the x-rays is suitable for imaging micron thick specimens without sectioning. This large difference in cross-section yields good specimen contrast, so that fewer soft x-rays than electrons are required to image wet biological specimens at a given resolution. But most imaging techniques delivering better resolution than visible light produce radiation damage. Soft x-rays are known to be very effective in damaging biological specimens. The STXM is constructed to minimize specimen dose, but it is important to measure the actual damage induced as a function of dose in order to determine the dose range within which radiation damage does not compromise image quality.


Author(s):  
C. Jacobsen ◽  
J. Fu ◽  
S. Mayer ◽  
Y. Wang ◽  
S. Williams

In scanning luminescence x-ray microscopy (SLXM), a high resolution x-ray probe is used to excite visible light emission (see Figs. 1 and 2). The technique has been developed with a goal of localizing dye-tagged biochemically active sites and structures at 50 nm resolution in thick, hydrated biological specimens. Following our initial efforts, Moronne et al. have begun to develop probes based on biotinylated terbium; we report here our progress towards using microspheres for tagging.Our initial experiments with microspheres were based on commercially-available carboxyl latex spheres which emitted ~ 5 visible light photons per x-ray absorbed, and which showed good resistance to bleaching under x-ray irradiation. Other work (such as that by Guo et al.) has shown that such spheres can be used for a variety of specific labelling applications. Our first efforts have been aimed at labelling ƒ actin in Chinese hamster ovarian (CHO) cells. By using a detergent/fixative protocol to load spheres into cells with permeabilized membranes and preserved morphology, we have succeeded in using commercial dye-loaded, spreptavidin-coated 0.03μm polystyrene spheres linked to biotin phalloidon to label f actin (see Fig. 3).


2019 ◽  
Vol 6 (21) ◽  
pp. 3693-3697 ◽  
Author(s):  
Jiu-Jian Ji ◽  
Zhi-Qiang Zhu ◽  
Li-Jin Xiao ◽  
Dong Guo ◽  
Xiao Zhu ◽  
...  
Keyword(s):  

A novel, green and efficient visible-light-promoted decarboxylative aminoalkylation reaction of imidazo[1,2-a]pyridines with N-aryl glycines has been described.


Sign in / Sign up

Export Citation Format

Share Document