A novel transcriptional repressor PhaR for the steroid-inducible expression of the 3,17β-hydroxysteroid dehydrogenase gene in Comamonas testosteroni ATCC11996

2013 ◽  
Vol 202 (1-3) ◽  
pp. 116-125 ◽  
Author(s):  
Mingtang Li ◽  
Guangming Xiong ◽  
Edmund Maser
2007 ◽  
Vol 53 (3) ◽  
pp. 499-508 ◽  
Author(s):  
Maho ISHIDA ◽  
Jae-hyek CHOI ◽  
Keiji HIRABAYASHI ◽  
Takashi MATSUWAKI ◽  
Masatoshi SUZUKI ◽  
...  

1994 ◽  
Vol 2 (5) ◽  
pp. 444-449 ◽  
Author(s):  
Marie-Claude Vohl ◽  
France T. Dionne ◽  
Louis Pérusse ◽  
Olivier Dériaz ◽  
Monique Chagnon ◽  
...  

2004 ◽  
Vol 186 (5) ◽  
pp. 1430-1437 ◽  
Author(s):  
José Luis Pruneda-Paz ◽  
Mauricio Linares ◽  
Julio E. Cabrera ◽  
Susana Genti-Raimondi

ABSTRACT We have identified a new steroid-inducible gene (designated teiR [testosterone-inducible regulator]) in Comamonas testosteroni that is required for testosterone degradation. Nucleotide sequence analysis of teiR predicts a 391-amino-acid protein which shows homology between residues 327 and 380 (C-terminal domain) to the LuxR helix-turn-helix DNA binding domain and between residues 192 and 227 to the PAS sensor domain. This domain distribution resembles that described for TraR, a specific transcriptional regulator involved in quorum sensing in Agrobacterium tumefaciens. Analysis of the gene expression indicated that teiR is tightly controlled at the transcriptional level by the presence of testosterone in the culture medium. A teiR-disrupted mutant strain was completely unable to use testosterone as the sole carbon and energy source. In addition, the expression of several steroid-inducible genes was abolished in this mutant. Northern blot assays revealed that teiR is required for full expression of sip48-β-HSD gene mRNA (encoding a steroid-inducible protein of 48 kDa and 3β-17β-hydroxysteroid dehydrogenase) and also of other steroid degradation genes, including those encoding 3α-hydroxysteroid dehydrogenase, Δ5-3-ketoisomerase, 3-oxo-steroid Δ1-dehydrogenase, and 3-oxo-steroid Δ4-(5α)-dehydrogenase enzymes. Moreover, when teiR was provided to the teiR-disrupted strain in trans, the transcription level of these genes was restored. These results indicate that TeiR positively regulates the transcription of genes involved in the initial enzymatic steps of steroid degradation in C. testosteroni.


Sign in / Sign up

Export Citation Format

Share Document