inducible expression
Recently Published Documents


TOTAL DOCUMENTS

950
(FIVE YEARS 73)

H-INDEX

86
(FIVE YEARS 4)

2021 ◽  
Vol 22 (24) ◽  
pp. 13582
Author(s):  
Keziah M. Omenge ◽  
Florian Rümpler ◽  
Subha Suvetha Kathalingam ◽  
Alexandra C. U. Furch ◽  
Günter Theißen

Phytoplasmas are bacterial pathogens that live mainly in the phloem of their plant hosts. They dramatically manipulate plant development by secreting effector proteins that target developmental proteins of their hosts. Traditionally, the effects of individual effector proteins have been studied by ectopic overexpression using strong, ubiquitously active promoters in transgenic model plants. However, the impact of phytoplasma infection on the host plants depends on the intensity and timing of infection with respect to the developmental stage of the host. To facilitate investigations addressing the timing of effector protein activity, we have established chemical-inducible expression systems for the three most well-characterized phytoplasma effector proteins, SECRETED ASTER YELLOWS WITCHES’ BROOM PROTEIN 11 (SAP11), SAP54 and TENGU in transgenic Arabidopsis thaliana. We induced gene expression either continuously, or at germination stage, seedling stage, or flowering stage. mRNA expression was determined by quantitative reverse transcription PCR, protein accumulation by confocal laser scanning microscopy of GFP fusion proteins. Our data reveal tight regulation of effector gene expression and strong upregulation after induction. Phenotypic analyses showed differences in disease phenotypes depending on the timing of induction. Comparative phenotype analysis revealed so far unreported similarities in disease phenotypes, with all three effector proteins interfering with flower development and shoot branching, indicating a surprising functional redundancy of SAP54, SAP11 and TENGU. However, subtle but mechanistically important differences were also observed, especially affecting the branching pattern of the plants.


Author(s):  
Nan Lu ◽  
Chenglin Zhang ◽  
Wenjie Zhang ◽  
Haoran Xu ◽  
Yuhong Li ◽  
...  

Corynebacterium glutamicum is one of the important industrial microorganisms for production of amino acids and other value-added compounds. Most expression vectors used in C. glutamicum are based on inducible promoter (Ptac or Ptrc) activated by isopropyl-β-D-thiogalactopyranoside (IPTG). However, these vectors seem unsuitable for large-scale industrial production due to the high cost and toxicity of IPTG. Myo-inositol is an ideal inducer because of its non-toxicity and lower price. In this study, a myo-inositol-inducible expression vector pMI-4, derived from the expression vector pXMJ19, was constructed. Besides the original chloramphenicol resistance gene cat, multiple cloning sites, and rrnB terminator, the pMI-4 (6,643 bp) contains the iolRq cassette and the myo-inositol-inducible promoter PiolT1. The pMI-4 could stably replicate in the C. glutamicum host. Meanwhile, the non-myo-inositol degradation host strain C. glutamicumΔiolGΔoxiCΔoxiDΔoxiE for maintaining the pMI-4 was developed. Overexpression of hemAM and hemL using pMI-4 resulted in a significant accumulation of 5-aminolevulinic acid, indicating its potential application in metabolic engineering and industrial fermentation.


2021 ◽  
Vol 190 ◽  
pp. 104582
Author(s):  
Karikalan Jayaraman ◽  
Venkat Raman K. ◽  
Amitha Mithra Sevanthi ◽  
Sivakumar S.R. ◽  
Gayatri ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Xingyang Qiu ◽  
Hao Sun ◽  
Dan Wang ◽  
Jingqi Ren ◽  
Xinyan Wang ◽  
...  

Interleukin-12 (IL-12) is a heterodimeric cytokine composed of a p35 subunit specific to IL-12 and a p40 subunit shared with IL-23. In this study, we unveiled the existence of two p35 paralogues in grass carp (named gcp35a and gcp35b). Notably, gcp35a and gcp35b displayed distinct inducible expression patterns, as poly I:C merely induced the gene expression of gcp35a but not gcp35b, while recombinant grass carp interferon-gamma (rgcIfn-γ) only enhanced the transcription of gcp35b but not gcp35a. Moreover, the signaling mechanisms responsible for the inducible expression of gcp35a and gcp35b mRNA were elucidated. Because of the existence of three grass carp p40 genes (gcp40a, gcp40b and gcp40c) and two p35 paralogues, six gcIl-12 isoforms were predicted by 3D modeling. Results showed that gcp40a and gcp40b but not gcp40c had the potential for forming heterodimers with both gcp35 paralogues via the disulfide bonds. Non-reducing electrophoresis experiments further disclosed that only gcp40b but not gcp40a or gcp40c could form heterodimers with gcp35 to produce secretory heterodimeric gcp35a/gcp40b (gcIl-12AB) and gcp35b/gcp40b (gcIl-12BB), which prompted us to prepare their recombinant proteins. These two recombinant proteins exhibited their extensive regulation on Ifn-γ production in various immune cells. Intriguingly, both gcIl-12 isoforms significantly enhanced the transcription of il-17a/f1 and il-22 in lymphocytes, and their regulation on il-17a/f1 expression was mediated by Stat3/Rorγt signaling, supporting the potential of gcIl-12 isoforms for inducing Th17-like responses. Additionally, stimulatory effects of gcIl-12 isoforms on il-17a/f1 and ifn-γ expression were attenuated by gcTgf-β1 via suppressing the activation of Stat3 signaling, implying that their signaling could be manipulated. In brief, our works provide new insights into the inducible expression pattern, heterodimeric generation and functional novelty of Il-12 isoforms in teleosts.


2021 ◽  
Vol 17 (6) ◽  
Author(s):  
Yuko Arita ◽  
Griffin Kim ◽  
Zhijian Li ◽  
Helena Friesen ◽  
Gina Turco ◽  
...  

Author(s):  
Suchada Chanprateep Napathorn ◽  
Sirirat Visetkoop ◽  
Onruthai Pinyakong ◽  
Kenji Okano ◽  
Kohsuke Honda

Cupriavidus necator strain A-04 has shown 16S rRNA gene identity to the well-known industrial strain C. necator H16. Nevertheless, the cell characteristics and polyhydroxyalkanoate (PHA) production ability of C. necator strain A-04 were different from those of C. necator H16. This study aimed to express PHA biosynthesis genes of C. necator strain A-04 in Escherichia coli via an arabinose-inducible expression system. In this study, the PHA biosynthesis operon of C. necator strain A-04, consisting of three genes encoding acetyl-CoA acetyltransferase (phaAA–04, 1182 bp, 40.6 kDa), acetoacetyl-CoA reductase (phaBA–04, 741 bp, 26.4 kDa) and PHB synthase Class I (phaCA–04, 1770 bp), was identified. Sequence analysis of the phaAA–04, phaBA–04, and phaCA–04 genes revealed that phaCA–04 was 99% similar to phaCH16 from C. necator H16. The difference in amino acid residue situated at position 122 of phaCA–04 was proline, whereas that of C. necator H16 was leucine. The intact phaCABA–04 operon was cloned into the arabinose-inducible araBAD promoter and transformed into E. coli strains Top 10, JM109 and XL-1 blue. The results showed that optimal conditions obtained from shaken flask experiments yielded 6.1 ± 1.1 g/L cell dry mass (CDM), a PHB content of 93.3 ± 0.9% (w/w) and a productivity of 0.24 g/(L⋅h), whereas the wild-type C. necator strain A-04 accumulated 78% (w/w) PHB with a productivity of 0.09 g/(L⋅h). Finally, for the scaled-up studies, fed-batch cultivations by pH-stat control in a 5-L fermenter of E. coli strains XL1-Blue harboring pBAD/Thio-TOPO-phaCABA–04 and pColdTF-phaCABA–04 in MR or LB medium, leading to a PHB production of 31.4 ± 0.9 g/L at 54 h with a PHB content of 83.0 ± 3.8% (w/w), a CDM of 37.8 ± 1.2 g/L, a YP/S value of 0.39 g PHB/g glucose and a productivity of 0.6 g PHB/(L⋅h) using pColdTF-phaCABA–04 in MR medium. In addition, PHB production was 29.0 ± 1.1 g/L with 60.2 ± 2.3% PHB content in the CDM of 53.1 ± 1.0 g/L, a YP/S value of 0.21 g PHB/g glucose and a productivity of 0.4 g PHB/(L⋅h) using pBAD/Thio-TOPO-phaCABA–04 in LB medium. Thus, a relatively high PHB concentration and productivity were achieved, which demonstrated the possibility of industrial production of PHB.


Sign in / Sign up

Export Citation Format

Share Document