The impact of social status on the erythrocyte β-adrenergic response in rainbow trout, Oncorhynchus mykiss

Author(s):  
J.B. Thomas ◽  
K.M. Gilmour
1990 ◽  
Vol 68 (5) ◽  
pp. 969-973 ◽  
Author(s):  
J. M. Shrimpton ◽  
D. J. Randall ◽  
L. E. Fidler

We examined the effects of swim bladder overinflation associated with dissolved gas supersaturation on rainbow trout (Oncorhynchus mykiss). The change in swim bladder volume with increased swim bladder pressure was measured in fish subjected to a decrease in ambient pressure. An expansion of swim bladder volume occurs that is related to the excess swim bladder pressure. The volume change results in a decrease in density and positive buoyancy in the fish. Small fish are adversely affected when exposed to gas supersaturated water because of the high swim bladder pressure required to force gas out the pneumatic duct. Changes in behaviour and depth distribution of fish held in gas supersaturated water were measured in a 2 m deep observation column. A large change in density caused small fish to increase depth and compensate for the swim bladder expansion. Although swim bladder inflation occurs for all sizes of trout held in gas supersaturated water, the impact is greatest for small fish and they must compensate by seeking depth. However, adequate depth to compensate for positive buoyancy may not always exist. In such a case, fish must swim continuously in a head down position to overcome excess buoyancy. The power necessary for a fish to swim with an overinflated swim bladder is greatest for small fish that show the largest change in density.


2012 ◽  
Vol 85 (4) ◽  
pp. 309-320 ◽  
Author(s):  
Kathleen M. Gilmour ◽  
Sheryn Kirkpatrick ◽  
Andrey Massarsky ◽  
Brenda Pearce ◽  
Sarah Saliba ◽  
...  

Aquaculture ◽  
2006 ◽  
Vol 255 (1-4) ◽  
pp. 466-479 ◽  
Author(s):  
B.P. North ◽  
J.F. Turnbull ◽  
T. Ellis ◽  
M.J. Porter ◽  
H. Migaud ◽  
...  

2004 ◽  
Vol 61 (4) ◽  
pp. 618-626 ◽  
Author(s):  
Katherine A Sloman ◽  
Graham R Scott ◽  
D Gordon McDonald ◽  
Chris M Wood

Competition for social status can result in physiological differences between individuals, including differences in ionoregulatory ability. Subordinate rainbow trout (Oncorhynchus mykiss) had two-fold higher uptake rates of sodium across the gill and two-fold higher whole-body sodium efflux rates than the dominant fish with which they were paired. Sodium efflux was then divided into branchial and renal components, both of which were higher in subordinates. Branchial sodium efflux accounted for 95%–98% of sodium loss. Plasma sodium concentrations were more variable, although not significantly different, in subordinate fish, suggesting that the increased loss of sodium in these trout is compensated for by an increase in uptake rates. Urine flow rates and plasma cortisol concentrations were higher in subordinate fish, but there was no difference in glomerular filtration rate between dominants and subordinates. Renal sodium reabsorption was significantly reduced in subordinates. In summary, the ionoregulation of subordinate individuals was altered, most likely occurring as a result of stress-induced changes in gill permeability, resulting in a higher throughput of water and increased branchial sodium efflux. These changes in ionoregulatory ability have many physiological implications, including the increased susceptibility of subordinates to ionoregulatory challenges and an increased metabolic cost of ionoregulation.


Sign in / Sign up

Export Citation Format

Share Document