Venous responses during exercise in rainbow trout, Oncorhynchus mykiss: α-adrenergic control and the antihypotensive function of the renin–angiotensin system

Author(s):  
Erik Sandblom ◽  
Michael Axelsson ◽  
David J. McKenzie
2000 ◽  
Vol 278 (6) ◽  
pp. R1685-R1691 ◽  
Author(s):  
J. Anne Brown ◽  
Richard K. Paley ◽  
Shehla Amer ◽  
Stephen J. Aves

Physiological and molecular approaches were used to investigate the existence of an intrarenal renin-angiotensin system (RAS) in rainbow trout. Inhibition of angiotensin-converting enzyme by captopril (5 × 10− 4 M) rapidly decreased vascular resistance of the trunk of the trout, perfused at 19 mmHg, resulting in an increased perfusate flow rate and a decreased intrarenal dorsal aortic pressure. A profound diuresis occurred in the in situ perfused kidney and reflected both increased glomerular filtration rates and decreased water reabsorption (osmolyte reabsorption was unchanged). Renal and vascular parameters recovered once captopril treatment was stopped. Diuretic and vascular effects of captopril on the in situ trout kidney concur with an inhibition of known vasoconstrictor and antidiuretic actions of angiotensin II. However, at a higher perfusion pressure (28 mmHg), captopril had no effect on intrarenal aortic pressure or perfusate and urine flow rates, suggesting that the trout intrarenal RAS is activated by low perfusion pressures/flows. Existence of the renal RAS in trout was further supported by evidence for angiotensinogen gene expression in kidney as well as liver.


1999 ◽  
Vol 160 (3) ◽  
pp. 351-363 ◽  
Author(s):  
NJ Bernier ◽  
H Kaiya ◽  
Y Takei ◽  
SF Perry

The individual contributions of, and potential interactions between, the renin-angiotensin system (RAS) and the humoral adrenergic stress response to blood pressure regulation were examined in rainbow trout. Intravenous injection of the smooth muscle relaxant, papaverine (10 mg/kg), elicited a transient decrease in dorsal aortic blood pressure (PDA) and systemic vascular resistance (RS), and significant increases in plasma angiotensin II (Ang II) and catecholamine concentrations. Blockade of alpha-adrenoceptors before papaverine treatment prevented PDA and RS recovery, had no effect on the increase in plasma catecholamines, and resulted in greater plasma Ang II concentrations. Administration of the angiotensin-converting enzyme inhibitor, lisinopril (10(-4) mol/kg), before papaverine treatment attenuated the increases in the plasma concentrations of Ang II, adrenaline, and noradrenaline by 90, 79, and 40%, respectively and also prevented PDA and RS recovery. By itself, lisinopril treatment caused a gradual and sustained decrease in PDA and RS, and reductions in basal plasma Ang II and adrenaline concentrations. Bolus injection of a catecholamine cocktail (4 nmol/kg noradrenaline plus 40 nmol/kg adrenaline) in the lisinopril+papaverine-treated trout, to supplement their circulating catecholamine concentrations and mimic those observed in fish treated only with papaverine, resulted in a temporary recovery in PDA and RS. These results indicate that the RAS and the acute humoral adrenergic response are both recruited during an acute hypotensive stress, and have important roles in the compensatory response to hypotension in rainbow trout. However, whereas the contribution of the RAS to PDA recovery is largely indirect and relies on an Ang II-mediated secretion of catecholamines, the contribution from the adrenergic system is direct and relies at least in part on plasma catecholamines.


Sign in / Sign up

Export Citation Format

Share Document