Seasonally constant field metabolic rates in free-ranging sugar gliders (Petaurus breviceps)

Author(s):  
Darren G. Quin ◽  
Alexander Riek ◽  
Stuart Green ◽  
Andrew P. Smith ◽  
Fritz Geiser
1985 ◽  
Vol 33 (5) ◽  
pp. 683 ◽  
Author(s):  
KA Nagy ◽  
GC Suckling

Doubly labelled water measurements in free-ranging sugar gliders (Petaurus breviceps) weighing 121 g indicated that field metabolic rates (FMRS) averaged 62.5 litres CO2/kg daily, equivalent to 169 kJ per animal daily (3.8 times basal metabolic rate). The females, most of which had small pouch young, weighed significantly less than males (112 g compared with 135 g), but mass-specific FMRS did not differ significantly between sexes. Rates of water influx (mass-specific) also did not differ between sexes, and were 208 ml/kg daily. The diet consisted of about two-thirds acacia gum, one-third mixed arthropods and traces of bark (on a dry mass basis). Apparent assimilation of dietary substances was 88% for DM, 89% for energy, 86% for nitrogen and 61% for water. Gliders consumed 11.2 g DM of food daily. The diet contained 44% water (fresh mass basis), and provided about half of the water gliders obtained. The other half presumably was ingested as rainwater. In comparison with the ecologically similar Leadbeater's possums (129 g), sugar gliders had lower metabolic rates while active outside their nests (17.4 compared with 31.4 kJ/h for the possums), primarily because possums spent energy for activity 2.5 times faster than did sugar gliders. This suggests that gliding affords sugar gliders a considerable energetic saving, but portion of time abroad spent foraging and resting, and distribution, abundance and predictability of food resources may also account for this difference.


2021 ◽  
pp. jeb.233544
Author(s):  
Evan E. Byrnes ◽  
Karissa O. Lear ◽  
Lauran R. Brewster ◽  
Nicholas M. Whitney ◽  
Matthew J. Smukall ◽  
...  

Dynamic Body Acceleration (DBA), measured through animal-attached tags, has emerged as a powerful method for estimating field metabolic rates of free-ranging individuals. Following respirometry to calibrate oxygen consumption rate (MO2) with DBA under controlled conditions, predictive models can be applied to DBA data collected from free-ranging individuals. However, laboratory calibrations are generally performed on a relatively narrow size range of animals, which may introduce biases if predictive models are applied to differently sized individuals in the field. Here, we tested the mass dependence of the DBA-MO2 relationship to develop an experimental framework for the estimation of field metabolic rates when organisms differ in size. We performed respirometry experiments with individuals spanning one order of magnitude in body mass (1.74–17.15 kg) and used a two-stage modelling process to assess the intraspecific scale dependence of the MO2-DBA relationship and incorporate such dependencies into the coefficients of MO2 predictive models. The final predictive model showed scale dependence; the slope of the MO2-DBA relationship was strongly allometric (M1.55), whereas the intercept term scaled closer to isometry (M1.08). Using bootstrapping and simulations, we evaluated the performance of this coefficient-corrected model against commonly used methods of accounting for mass effects on the MO2-DBA relationship and found the lowest error and bias in the coefficient-corrected approach. The strong scale dependence of the MO2-DBA relationship indicates that caution must be exercised when models developed using one size class are applied to individuals of different sizes.


1989 ◽  
Vol 37 (5) ◽  
pp. 553 ◽  
Author(s):  
KA Nagy ◽  
AJ Bradley ◽  
KD Morris

Field metabolic rates (FMRS) and water influx rates were measured by means of doubly labelled water in free-ranging quokkas living on Rottnest I, and free-ranging tammar wallabies living on Garden I. Feeding rates were estimated from energy requirements. Quokkas ranging in body mass from 1.44 to 2.83 kg (mean 1.90 kg) had FMRS averaging 0.574 mL C02 (g.h)-', which is equivalent to 548 kJ d-'. Their rates of total water intake averaged 47.3 mL (kg.d)-', or 90.5 mL d-'. Estimated feeding rate was 54.8 g (dry matter) per day, and water ingested as part of the food (preformed and metabolically produced) can completely account for total water intake. We believe that quokkas did not drink water during our field measurements. Tammars ranging in body mass from 3.20 to 6.35 kg (mean 4.38 kg) had FMRS averaging 0.518 mL CO2 (g.h)-', which is equivalent to 1150 kJ d-'. Their rates of water influx averaged 57.5 mL (kg.d)-', or 270 mL d-', and their estimated feeding rate was 115 g (dry matter) per day. Tammars also probably did not drink free-standing water during our study. FMRs of quokkas averaged 1 .80 x basal metabolic rate (BMR), and FMRS of tammars averaged 1.87 x BMR; this difference is not significant. We estimate that the 5000 quokkas on Rottnest I. consume at least 100 000 kg of plant matter (dry mass) per year, and the 2173 tammars on Garden I. ingest more than 90 000 kg. Measurements of food availability are needed to permit evaluation of the relationship between food supply and demand for these two populations of macropod marsupials.


1988 ◽  
Vol 36 (3) ◽  
pp. 293 ◽  
Author(s):  
KA Nagy ◽  
AK Lee ◽  
RW Martin ◽  
MR Fleming

Field metabolic rates (FMRs) and rates of water flux in free-ranging fat-tailed dunnarts, Sminthopsis crassicaudata, were measured during spring (late October) using doubly labelled water. Feeding rates were estimated on the basis of water and energy fluxes. FMRs averaged 68.7 kJ d-' in adults (mean body mass= 16.6 g), and were 29.2 kJ d-' in juveniles (6.1 g). These FMRs are 6.6 times basal metabolic rate (BMR), and are much higher than the hypothetical maxima of four to five times BMR. Other dasyurid marsupials also have high FMR/BMR ratios, but so does a small petaurid marsupial. S. crassicaudata consumed 80-90% of its body mass in arthropods each day. The diet of arthropods apparently provided enough water for the animals to maintain water balance without drinking during this study.


1995 ◽  
Vol 43 (1) ◽  
pp. 59 ◽  
Author(s):  
WAH Ellis ◽  
A Melzer ◽  
B Green ◽  
K Newgrain ◽  
MA Hindell ◽  
...  

Mass-corrected field metabolic rates of free-ranging male koalas in central Queensland, Australia, varied between 0.329 MJ kg0.75 day-1 in summer and 0.382 MJ kg0.75 day-1 in winter. Field water influx measured 50.8 mL kg-0.8 day-1 in winter, increasing to 59.9 mL kg0.8 day-1 in summer for the same koalas, and was positively correlated with values for leaf moisture of food. Winter rates of water influx for koalas from Springsure were lower than those recorded for koalas from Victoria for the same period of the year. Mass-corrected feeding rates were lower in summer than winter; wet food intake was significantly lower than reported for similar sized female koalas from Victoria. The preferred browse was Eucalyptus crebra in winter and E. tereticornis in summer. Our study indicates that in central Queensland seasonal changes in diet selection by male koalas reflect increased energy requirements in winter and increased water requirements in summer.


2020 ◽  
Author(s):  
Evan E. Byrnes ◽  
Karissa O. Lear ◽  
Lauran R. Brewster ◽  
Nicholas M. Whitney ◽  
Matthew J. Smukall ◽  
...  

ABSTRACTLife history, reproduction, and survival are fundamentally linked to energy expenditure and acquisition. Dynamic Body Acceleration (DBA), measured through animal-attached data-loggers or transmitters, has emerged as a powerful method for estimating field metabolic rates of free-ranging individuals. After using respirometry to calibrate oxygen consumption rate with DBA in captive settings, predictive models can be applied to DBA data collected from free-ranging individuals. However, laboratory calibrations are generally performed on a narrow size range of animals, which may introduce biases when predictive models are applied to differently sized individuals in the field. Here, we tested the influence of scale effects on the ability of a single predictive model to predict over a range of body sizes. We performed respirometry experiments with individuals spanning one order of magnitude in body mass (1.74–17.15 kg) and used a two-step modelling process to assess the intra-specific scale dependence of the -DBA relationship and incorporate such dependencies into the covariates of predictive models. The final predictive model showed scale dependence; the slope of the -DBA relationship was strongly allometric (M1.55), whereas the intercept term scaled closer to isometry (M1.08). Using bootstrapping and simulations, we tested the performance of this covariate-corrected model against commonly used methods of accounting for mass effects on the -DBA relationship and found lowest error and bias in the covariate-corrected approach. The strong scale dependence of the -DBA relationship indicates that caution must be exercised when models developed using one size class are applied to individuals of different sizes.Summary statementThe relationship between oxygen consumption rate and dynamic body acceleration is allometrically dependent, and models incorporate different slope and intercept scaling rates estimate metabolic rates more accurately than mass-specific approaches.


1982 ◽  
Vol 60 (6) ◽  
pp. 1412-1416 ◽  
Author(s):  
Justin D. Congdon ◽  
Donald W. Tinkle

Metabolic rates of free-ranging Sceloporus graciosus (Sauria: Iguanidae) were measured during the summer using doubly labeled H2O. Adults of either sex and juveniles did not differ in field metabolic rates (0.26 mL CO2∙g−1∙h−1or 160 J∙g−1∙day−1). Field metabolic rates were 2.4 times the resting metabolic rate, and activity respiration was 3.1 times the resting metabolic rate at lizard activity temperatures. Activity accounted for 59% of the energy consumption due to respiration. Calculated rates of feeding indicated a 415 J∙day−1 deficit in metabolizable energy intake, and this was reflected in rate of loss of body mass throughout the study. Daily energy harvested by 200 lizards (31 kJ∙day−1), which approximates densities (per hectare) on the study area, would supply only 40% of the daily energy requirements of one insectivorous bird with similar body mass and activity level of a Phainopepla (79 kJ∙day−1).


Ecology ◽  
1996 ◽  
Vol 77 (4) ◽  
pp. 1181-1188 ◽  
Author(s):  
Robert W. Furness ◽  
David M. Bryant

2020 ◽  
Vol 158 (5) ◽  
pp. 431-437
Author(s):  
Michael Kam ◽  
Shaher El-Meccawi ◽  
Arieh Brosh ◽  
A. Allan Degen

AbstractSheep are grazers and goats are intermediate feeders. By employing O2 consumption and heart rate measurements, resting metabolic rate (RMR) and field metabolic rate (FMR) were determined in four male fat-tailed Awassi sheep (44.0 ± 3.94) and four male Baladi goats (35.5 ± 5.42 kg) that were co-grazing natural pasture in the Negev Desert. There were 67.7 ± 3.75 g DM/m2 of herbaceous vegetation biomass, which was rapidly becoming senescent and more fibrous. We hypothesized that FMR of these desert-adapted ruminants would be relatively low when compared to other sheep and goat breeds, as animals in arid areas tend to have low metabolic rates. Both sheep (n = 6) and goats (n = 6) foraged 71% of the allotted 11 h free-pasture period; however, sheep grazed more than goats (P < 0.001); whereas goats browsed more than sheep (P < 0.001). RMR was higher (P = 0.007) in sheep than in goats (529 ± 23.5 v. 474 ± 25.4 kJ/kg0.75 BW/d), but FMR did not differ between species (618 ± 55.7 v. 613 ± 115.2 kJ/kg0.75 BW/d). In addition, the cost of activities, as a proportion of FMR, did not differ between sheep and goats; FMR increased by 89 kJ/kg0.75 BW/d or 17% in sheep and by 138 kJ/kg0.75 BW/d or 29% in goats. In comparing FMRs of sheep and goats in this study with these species in other studies, differences were inconsistent and, therefore, our hypothesis was not supported.


Oecologia ◽  
2020 ◽  
Vol 193 (2) ◽  
pp. 311-323 ◽  
Author(s):  
Karissa O. Lear ◽  
David L. Morgan ◽  
Jeff M. Whitty ◽  
Nicholas M. Whitney ◽  
Evan E. Byrnes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document