scholarly journals Intrinsically disordered proteins are potential drug targets

2010 ◽  
Vol 14 (4) ◽  
pp. 481-488 ◽  
Author(s):  
Steven J Metallo
Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2118
Author(s):  
Yusuke Hosoya ◽  
Junko Ohkanda

Intrinsically disordered proteins (IDPs) are critical players in the dynamic control of diverse cellular processes, and provide potential new drug targets because their dysregulation is closely related to many diseases. This review focuses on several medicinal studies that have identified low-molecular-weight inhibitors of IDPs. In addition, clinically relevant liquid–liquid phase separations—which critically involve both intermolecular interactions between IDPs and their posttranslational modification—are analyzed to understand the potential of IDPs as new drug targets.


2020 ◽  
Author(s):  
Miguel Mompeán ◽  
Miguel Á. Treviño ◽  
Douglas V. Laurents

AbstractIntrinsically disordered proteins (IDPs) play essential roles in regulating physiological processes in eukaryotic cells. Many virus use their own IDPs to “hack” these processes to disactive host defenses and promote viral growth. Thus, viral IDPs are attractive drug targets. While IDPs are hard to study by X-ray crystallography or cryo-EM, atomic level information on their conformational perferences and dynamics can be obtained using NMR spectroscopy. SARS-CoV-2 Nsp2 interacts with human proteins that regulate translation initiation and endosome vesicle sorting, and the C-terminal region of this protein is predicted to be disordered. Molecules that block these interactions could be valuable leads for drug development. To enable inhibitor screening and to uncover conformational preferences and dynamics, we have expressed and purified the 13C,15N-labeled C-terminal region of Nsp2. The 13Cβ and backbone 13CO, 1HN, 13Cα and 15N nuclei were assigned by analysis of a series of 2D 1H-15N HSQC and 13C-15N CON as well as 3D HNCO, HNCA, CBCAcoNH and HncocaNH spectra. Overall, the chemical shift data confirm that this region is chiefly disordered, but contains two five-residue segments that adopt a small population of β-strand structure. Whereas the region is flexible on ms/ms timescales as gauged by T1ρ measurements, the {1H}-15N NOEs reveal a flexibility on ns/ps timescales that is midway between a fully flexible and a completely rigid chain.


2017 ◽  
Vol 16 ◽  
pp. 117693511769940 ◽  
Author(s):  
Deepak Kumar ◽  
Nitin Sharma ◽  
Rajanish Giri

The concept of protein intrinsic disorder has taken the driving seat to understand regulatory proteins in general. Reports suggest that in mammals nearly 75% of signalling proteins contain long disordered regions with greater than 30 amino acid residues. Therefore, intrinsically disordered proteins (IDPs) have been implicated in several human diseases and should be considered as potential novel drug targets. Moreover, intrinsic disorder provides a huge multifunctional capability to hub proteins such as c-Myc and p53. c-Myc is the hot spot for understanding and developing therapeutics against cancers and cancer stem cells. Our past understanding is mainly based on in vitro and in vivo experiments conducted using c-Myc as whole protein. Using the reductionist approach, c-Myc oncoprotein has been divided into structured and disordered domains. A wealth of data is available dealing with the structured perspectives of c-Myc, but understanding c-Myc in terms of disordered domains has just begun. Disorderness provides enormous flexibility to proteins in general for binding to numerous partners. Here, we have reviewed the current progress on understanding c-Myc using the emerging concept of IDPs.


Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 635 ◽  
Author(s):  
Hao He ◽  
Jiaxiang Zhao ◽  
Guiling Sun

Molecular recognition features (MoRFs) are one important type of intrinsically disordered proteins functional regions that can undergo a disorder-to-order transition through binding to their interaction partners. Prediction of MoRFs is crucial, as the functions of MoRFs are associated with many diseases and can therefore become the potential drug targets. In this paper, a method of predicting MoRFs is developed based on the sequence properties and evolutionary information. To this end, we design two distinct multi-layer perceptron (MLP) neural networks and present a procedure to train them. We develop a preprocessing process which exploits different sizes of sliding windows to capture various properties related to MoRFs. We then use the Bayes rule together with the outputs of two trained MLP neural networks to predict MoRFs. In comparison to several state-of-the-art methods, the simulation results show that our method is competitive.


Author(s):  
Miguel Mompeán ◽  
Miguel Á. Treviño ◽  
Douglas V. Laurents

AbstractIntrinsically disordered proteins (IDPs) play essential roles in regulating physiological processes in eukaryotic cells. Many viruses use their own IDPs to “hack” these processes to deactivate host defenses and promote viral growth. Thus, viral IDPs are attractive drug targets. While IDPs are hard to study by X-ray crystallography or cryo-EM, atomic level information on their conformational preferences and dynamics can be obtained using NMR spectroscopy. SARS-CoV-2 Nsp2, whose C-terminal region (CtR) is predicted to be disordered, interacts with human proteins that regulate translation initiation and endosome vesicle sorting. Molecules that block these interactions could be valuable leads for drug development. The 13Cβ and backbone 13CO, 1HN, 13Cα, and 15N nuclei of Nsp2’s 45-residue CtR were assigned and used to characterize its structure and dynamics in three contexts; namely: (1) retaining an N-terminal His tag, (2) without the His tag and with an adventitious internal cleavage, and (3) lacking both the His tag and the internal cleavage. Two five-residue segments adopting a minor extended population were identified. Overall, the dynamic behavior is midway between a completely rigid and a fully flexible chain. Whereas the presence of an N-terminal His tag and internal cleavage stiffen and loosen, respectively, neighboring residues, they do not affect the tendency of two regions to populate extended conformations.


2021 ◽  
Vol 62 ◽  
pp. 90-100
Author(s):  
Mateusz Biesaga ◽  
Marta Frigolé-Vivas ◽  
Xavier Salvatella

Sign in / Sign up

Export Citation Format

Share Document