Green-synthesized, low-cost tetracyanodiazafluorene (TCAF) as electron injection material for organic light-emitting diodes

2019 ◽  
Vol 30 (11) ◽  
pp. 1969-1973 ◽  
Author(s):  
Bing Yang ◽  
Jianfeng Zhao ◽  
Zepeng Wang ◽  
Zhenlin Yang ◽  
Zongqiong Lin ◽  
...  
2008 ◽  
Vol 93 (18) ◽  
pp. 183302 ◽  
Author(s):  
Kai Xie ◽  
Juan Qiao ◽  
Lian Duan ◽  
Yang Li ◽  
Deqiang Zhang ◽  
...  

2009 ◽  
Vol 48 (8) ◽  
pp. 080205 ◽  
Author(s):  
Qian Liu ◽  
Deqiang Zhang ◽  
Lian Duan ◽  
Guohui Zhang ◽  
Liduo Wang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tsubasa Sasaki ◽  
Munehiro Hasegawa ◽  
Kaito Inagaki ◽  
Hirokazu Ito ◽  
Kazuma Suzuki ◽  
...  

AbstractAlthough significant progress has been made in the development of light-emitting materials for organic light-emitting diodes along with the elucidation of emission mechanisms, the electron injection/transport mechanism remains unclear, and the materials used for electron injection/transport have been basically unchanged for more than 20 years. Here, we unravelled the electron injection/transport mechanism by tuning the work function near the cathode to about 2.0 eV using a superbase. This extremely low-work function cathode allows direct electron injection into various materials, and it was found that organic materials can transport electrons independently of their molecular structure. On the basis of these findings, we have realised a simply structured blue organic light-emitting diode with an operational lifetime of more than 1,000,000 hours. Unravelling the electron injection/transport mechanism, as reported in this paper, not only greatly increases the choice of materials to be used for devices, but also allows simple device structures.


Sign in / Sign up

Export Citation Format

Share Document