Synthesis, crystal structure, Hirshfeld surface analysis and HOMO–LUMO energy levels of (E)-N′-(naphthalen-1-ylmethylene)-4-nitrobenzohydrazide

2019 ◽  
Vol 20 ◽  
pp. 100194 ◽  
Author(s):  
P. Sivajeyanthi ◽  
M. Jeevaraj ◽  
S. Jose Kavitha ◽  
M. Hemamalini ◽  
K. Balasubramani
Author(s):  
P. Periyannan ◽  
M. Beemarao ◽  
K . Karthik ◽  
S. Ponnuswamy ◽  
K. Ravichandran

In the title compound [systematic name: 1-(3-methyl-2,6-diphenylpiperidin-1-yl)ethanone], C20H23NO, the piperidine ring adopts a distorted boat conformation, while the phenyl rings subtend a dihedral angle 65.1 (2)°. In the crystal, molecules are linked by C—H...O hydrogen bonds into chains extending along the b-axis direction. The DFT/B3LYP/6–311 G(d,p) method was used to determine the HOMO–LUMO energy levels. A Hirshfeld surface analysis was conducted to verify the contributions of the different intermolecular interactions, indicating that the important contributions to the crystal packing are from H...H (73.2%), C...H (18.4%) and O...H (8.4%) interactions.


Author(s):  
Gamal Al Ati ◽  
Karim Chkirate ◽  
Joel T. Mague ◽  
Nadeem Abad ◽  
Redouane Achour ◽  
...  

The title molecule, C13H16N4O, adopts an angular conformation. In the crystal a layer structure is generated by N—H...O and N—H...N hydrogen bonds together with C—H...π(ring) interactions. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...H (53.8%), H...C/C...H (21.7%), H...N/N...H (13.6%), and H...O/O...H (10.8%) interactions. The optimized structure calculated using density functional theory (DFT) at the B3LYP/ 6–311 G(d,p) level is compared with the experimentally determined structure in the solid state. The calculated HOMO–LUMO energy gap is 5.0452 eV.


2019 ◽  
Vol 75 (11) ◽  
pp. 1638-1642
Author(s):  
M. Beemarao ◽  
S. Silambarasan ◽  
A. Jamal Abdul Nasser ◽  
M. Purushothaman ◽  
K. Ravichandran

The benzopyran ring of the title compound, C16H11ClN2O2, is planar [maximum deviation = 0.079 (2) Å] and is almost perpendicular to the chlorophenyl ring [dihedral angle = 86.85 (6)°]. In the crystal, N—H...O, O—H...N, C—H...O and C—H...Cl hydrogen bonds form inter- and intramolecular interactions. The DFT/B3LYP/6-311G(d,p) method was used to determine the HOMO–LUMO energy levels. The molecular electrostatic potential surfaces were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the intermolecular interactions in the molecule.


Author(s):  
Palaniyappan Sivajeyanthi ◽  
Bellarmin Edison ◽  
Kasthuri Balasubramani ◽  
Ganesan Premkumar ◽  
Toka Swu

The molecule of the title Schiff base compound, C14H13N3O3·H2O, displays a trans configuration with respect to the C=N bond. The dihedral angle between the benzene and pyridine rings is 29.63 (7)°. The crystal structure features intermolecular N—H...O, C—H...O, O—H...O and O—H...N hydrogen-bonding interactions, leading to the formation of a supramolecular framework. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...H (37.0%), O...H/H...O (23.7%)), C...H/H...C (17.6%) and N...H/H...N (11.9%) interactions. The title compound has also been characterized by frontier molecular orbital analysis.


2020 ◽  
Vol 76 (7) ◽  
pp. 1075-1079
Author(s):  
Nermin Kahveci Yagci ◽  
Md. Serajul Haque Faizi ◽  
Alev Sema Aydin ◽  
Necmi Dege ◽  
Onur Erman Dogan ◽  
...  

In the title compound, C15H15NO, the configuration of the C=N bond of the Schiff base is E, and an intramolecular O—H...N hydrogen bond is observed, forming an intramolecular S(6) ring motif. The phenol ring is inclined by 45.73 (2)° from the plane of the aniline ring. In the crystal, molecules are linked along the b axis by O—H...N and C—H...O hydrogen bonds, forming polymeric chains. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the packing arrangement are from H...H (56.9%) and H...C/C...H (31.2%) interactions. The density functional theory (DFT) optimized structure at the B3LYP/ 6–311 G(d,p) level is compared with the experimentally determined molecular structure, and the HOMO–LUMO energy gap is provided. The crystal studied was refined as an inversion twin.


Author(s):  
P. Periyannan ◽  
M. Beemarao ◽  
K. Karthik ◽  
S. Ponnuswamy ◽  
K. Ravichandran

In the title compound, C22H27NO, the piperidine ring adopts a chair conformation. The dihedral angles between the mean plane of the piperidine ring and the phenyl rings are 89.78 (7) and 48.30 (8)°. In the crystal, molecules are linked into chains along the b-axis direction by C—H...O hydrogen bonds. The DFT/B3LYP/6–311 G(d,p) method was used to determine the HOMO–LUMO energy levels. The molecular electrostatic potential surfaces were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the intermolecular interactions in the molecule.


Author(s):  
Younos Bouzian ◽  
Karim Chkirate ◽  
Joel T. Mague ◽  
Fares Hezam Al-Ostoot ◽  
Noureddine Hammou Ahabchane ◽  
...  

The title molecule, C20H15NO3, adopts a Z-shaped conformation with the carboxyl group nearly coplanar with the dihydroquinoline unit. In the crystal, corrugated layers are formed by C—H...O hydrogen bonds and are stacked by C—H...π(ring) interactions. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...H (43.3%), H...C/C...H (26.6%) and H...O/O...H (16.3%) interactions. The optimized structure calculated using density functional theory at the B3LYP/ 6–311 G(d,p) level is compared with the experimentally determined structure in the solid state. The calculated HOMO–LUMO energy gap is 4.0319 eV.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Nicoleta Caimac ◽  
Elena Melnic ◽  
Diana Chisca ◽  
Marina S. Fonari

The title compound crystallises in the triclinic centrosymmetric space group P1̄ with an intriguing high number of crystallographically unique binary salt-like adducts (Z′ = 8) and a total number of ionic species (Z′′ = 16) in the asymmetric unit.


Sign in / Sign up

Export Citation Format

Share Document