Evaluation of Cu-based oxygen carrier for chemical looping air separation in a fixed-bed reactor

2016 ◽  
Vol 287 ◽  
pp. 292-301 ◽  
Author(s):  
Kun Wang ◽  
Qingbo Yu ◽  
Qin Qin ◽  
Zongliang Zuo ◽  
Tianwei Wu
2008 ◽  
Vol 49 (11) ◽  
pp. 3178-3187 ◽  
Author(s):  
Qilei Song ◽  
Rui Xiao ◽  
Zhongyi Deng ◽  
Huiyan Zhang ◽  
Laihong Shen ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2156
Author(s):  
Young Ku ◽  
Chia-Wei Chang ◽  
Shr-Han Shiu ◽  
Hsuan-Chih Wu ◽  
Niels Michiel Moed

Chemical looping with oxygen uncoupling (CLOU) is an innovative alternative to conventional combustion. CuO/ZrO2 oxygen carriers were tested in this system for their effectiveness and resilience. Cupric oxide (CuO) was demonstrated to be a reliable oxygen carrier for oxygen-uncoupling with consistent recyclability even after 50 redox cycles in a thermogravimetric analyzer (TGA). The reduction of CuO to generate Cu2O and oxygen was observed to be improved markedly for experiments operated at higher temperatures; however, the oxidation of Cu2O by air to generate CuO was hindered for experiments carried out at elevated temperatures. The reduction rate of fabricated CuO/ZrO2 particles containing 40% CuO was enhanced with increasing temperature and decreased with increasing particle size for experiments operated in a fixed bed reactor. The geometrical contraction and Avrami-Erofe’ev models were demonstrated to be appropriate for describing the reduction and oxidation of CuO/ZrO2, respectively. The activation energies for the reduction and oxidation were determined to be 250.6 kJ/mol and 57.6 kJ/mol, respectively, based on experimental results in the temperature range between 850 and 1000 °C.


Sign in / Sign up

Export Citation Format

Share Document