Nanoscale zero-valent iron/cobalt@mesoporous hydrated silica core–shell particles as a highly active heterogeneous Fenton catalyst for the degradation of tetrabromobisphenol A

2021 ◽  
Vol 417 ◽  
pp. 129208
Author(s):  
Minghui Xiang ◽  
Maofang Huang ◽  
Hui Li ◽  
Wenbing Wang ◽  
Yuan Huang ◽  
...  
2018 ◽  
Vol 33 (11) ◽  
pp. 737-747
Author(s):  
Ting-ting Li ◽  
Tomoya Inose ◽  
Takahiro Oikawa ◽  
Masayuki Tokunaga ◽  
Keiichiro Hatoyama ◽  
...  

Author(s):  
Milan P. Nikolić ◽  
Vladimir B. Pavlović ◽  
Slobodanka Stanojević-Nikolić ◽  
Vladimir V. Srdić

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 4996-5011
Author(s):  
Lihuan Mo ◽  
Sizai Zhou ◽  
Shuang Yang ◽  
Jie Gong ◽  
Jun Li

Activated carbon (AC) and nanoscale zero–valent iron (nZVI) have been widely used in wastewater treatment, respectively, for the removal of organics. In this study, hemp fibers were applied to prepare AC by phosphoric acid activation at a carbonization temperature of 400°C. Then nZVI particles were immobilized onto the surface of hemp derived AC (HAC), and the composites (nZVI@HAC) were used as heterogeneous catalysts for Fenton–like treatment of pulping effluent. The as–prepared catalysts were characterized. The optimum conditions for Fenton–like reaction and the reusability of catalyst were investigated. Results showed that nZVI particles were well distributed on the surface of HAC without aggregation. Both HAC and nZVI@HAC have microporous structure. With the loading of nZVI, the catalysts were endowed with magnetism and more active sites. Under the optimal conditions (initial pH 3.0, H2O2 35 mmol/L, 2–nZVI@HAC 3.0 g/L), COD removal rate reached 87.74% of the highest. This work illustrated that the feasibility of HAC as a carrier of nZVI, and nZVI@HAC was an effective heterogeneous Fenton catalyst.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Tahani R. Al-Biladi ◽  
A. S. Al Dwayyan ◽  
M. Naziruddin Khan ◽  
Saif M. H. Qaid ◽  
Khalid Al Zahrani

Nanostructured fluorescent pyrromethene (PM) doped-silica core-shell particles were successfully prepared by Stöber process. The average size of the particles was in the range of 10–20 nm measured by TEM micrograph. The atomic structure and morphology of PM 597/SiO2core/shell nanoparticles were studied by AFM and SEM, respectively. Absorption and emission spectra of the PM 597/SiO2core/shell nanoparticles under the UV irradiation were studied and not significantly influenced at the position of peaks. Finally, amplified spontaneous emission (ASE) and photobleaching of dye were examined and found no significant influence on the peaks of PM dye due to the formation of smaller sizes of PM 597/SiO2core/shell nanoparticles. The observed PM 597/SiO2core/shell nanoparticles were different in shapes with smaller size distribution and highly luminescent. Majority of nanoparticles were roughly spherical with many of them aggregated. The less photobleaching of dye core may be due to the protection of pumped energy by SiO2shell and restricts the leakage of dye.


Sign in / Sign up

Export Citation Format

Share Document