Confined Li metal storage in porous carbon frameworks promoted by strong Li–substrate interaction

2021 ◽  
pp. 132897
Author(s):  
Jonghyeok Yun ◽  
Hong Rim Shin ◽  
Eun-Seo Won ◽  
Hyon Chol Kang ◽  
Jong-Won Lee
2020 ◽  
Author(s):  
Yamin Zhang ◽  
Zhongpu Wang ◽  
Deping Li ◽  
Qing Sun ◽  
Kangrong Lai ◽  
...  

<p></p><p>Porous carbon has attracted extensive attentions as the electrode material for various energy storage devices considering its advantages like high theoretical capacitance/capacity, high conductivity, low cost and earth abundant inherence. However, there still exists some disadvantages limiting its further applications, such as the tedious fabrication process, limited metal-ion transport kinetics and undesired structure deformation at harsh electrochemical conditions. Herein, we report a facile strategy, with calcium gluconate firstly reported as the carbon source, to fabricate ultrathin porous carbon nanosheets. <a>The as-prepared Ca-900 electrode delivers excellent K-ion storage performance including high reversible capacity (430.7 mAh g<sup>-1</sup>), superior rate capability (154.8 mAh g<sup>-1</sup> at an ultrahigh current density of 5.0 A g<sup>-1</sup>) and ultra-stable long-term cycling stability (a high capacity retention ratio of ~81.2% after 4000 cycles at 1.0 A g<sup>-1</sup>). </a>Similarly, when being applied in Zn-ion capacitors, the Ca-900 electrode also exhibits an ultra-stable cycling performance with ~90.9% capacity retention after 4000 cycles at 1.0 A g<sup>-1</sup>, illuminating the applicable potentials. Moreover, the origin of the fast and smooth metal-ion storage is also revealed by carefully designed consecutive CV measurements. Overall, considering the facile preparation strategy, unique structure, application flexibility and in-depth mechanism investigations, this work will deepen the fundamental understandings and boost the commercialization of high-efficient energy storage devices like potassium-ion/sodium-ion batteries, zinc-ion batteries/capacitors and aluminum-ion batteries.</p><br><p></p>


2009 ◽  
Vol 24 (2) ◽  
pp. 320-324 ◽  
Author(s):  
Wei XIE ◽  
Hai-Feng CHENG ◽  
Zeng-Yong CHU ◽  
Zhao-Hui CHEN ◽  
Yong-Jiang ZHOU

2018 ◽  
Vol 28 (7) ◽  
pp. 417-422
Author(s):  
Minji Jung ◽  
Seoha Park ◽  
Hyunchul Oh ◽  
Kwi-il Park

2020 ◽  
Vol 279 ◽  
pp. 119363 ◽  
Author(s):  
Jingren Yang ◽  
Deqian Zeng ◽  
Qinggang Zhang ◽  
Ruofan Cui ◽  
Muhammad Hassan ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tomoki Ogoshi ◽  
Yuma Sakatsume ◽  
Katsuto Onishi ◽  
Rui Tang ◽  
Kazuma Takahashi ◽  
...  

AbstractCarbon materials with controlled pore sizes at the nanometer level have been obtained by template methods, chemical vapor desorption, and extraction of metals from carbides. However, to produce porous carbons with controlled pore sizes at the Ångstrom-level, syntheses that are simple, versatile, and reproducible are desired. Here, we report a synthetic method to prepare porous carbon materials with pore sizes that can be precisely controlled at the Ångstrom-level. Heating first induces thermal polymerization of selected three-dimensional aromatic molecules as the carbon sources, further heating results in extremely high carbonization yields (>86%). The porous carbon obtained from a tetrabiphenylmethane structure has a larger pore size (4.40 Å) than those from a spirobifluorene (4.07 Å) or a tetraphenylmethane precursor (4.05 Å). The porous carbon obtained from tetraphenylmethane is applied as an anode material for sodium-ion battery.


Sign in / Sign up

Export Citation Format

Share Document