Fe2Mo3O8/MoO2@C Composites with Pseudocapacitive Properties and Fast Diffusion Kinetics for the Anode of Lithium-Ion Batteries

2021 ◽  
pp. 133984
Author(s):  
Juan Ding ◽  
Yudai Huang ◽  
Zhenjie Liu ◽  
Xingchao Wang ◽  
Yue Zhang ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1161
Author(s):  
Fanan Kong ◽  
Yong Yue ◽  
Qingyin Li ◽  
Shijie Ren

Heteroatom doping is regarded as a promising approach to enhance the electrochemical performance of carbon materials, while the poor controllability of heteroatoms remains the main challenge. In this context, sulfur-doped graphdiyne (S-GDY) was successfully synthesized on the surface of copper foil using a sulfur-containing multi-acetylene monomer to form a uniform film. The S-GDY film possesses a porous structure and abundant sulfur atoms decorated homogeneously in the carbon skeleton, which facilitate the fast diffusion and storage of lithium ions. The lithium-ion batteries (LIBs) fabricated with S-GDY as anode exhibit excellent performance, including the high specific capacity of 920 mA h g−1 and superior rate performances. The LIBs also show long-term cycling stability under the high current density. This result could potentially provide a modular design principle for the construction of high-performance anode materials for lithium-ion batteries.


2021 ◽  
Vol 118 (38) ◽  
pp. e2111549118
Author(s):  
Jinlin Yang ◽  
Jibiao Li ◽  
Wenbin Gong ◽  
Fengxia Geng

Rechargeable magnesium batteries represent a viable alternative to lithium-ion technology that can potentially overcome its safety, cost, and energy density limitations. Nevertheless, the development of a competitive room temperature magnesium battery has been hindered by the sluggish dissociation of electrolyte complexes and the low mobility of Mg2+ ions in solids, especially in metal oxides that are generally used in lithium-ion batteries. Herein, we introduce a generic proton-assisted method for the dissociation of the strong Mg–Cl bond to enable genuine Mg2+ intercalation into an oxide host lattice; meanwhile, the anisotropic Smoluchowski effect produced by titanium oxide lattices results in unusually fast Mg2+ diffusion kinetics along the atomic trough direction with a record high ion conductivity of 1.8 × 10−4 S ⋅ cm−1 on the same order as polymer electrolyte. The realization of genuine Mg2+ storage and fast diffusion kinetics enabled a rare high-power Mg-intercalation battery with inorganic oxides. The success of this work provides important information on engineering surface and interlayer chemistries of layered materials to tackle the sluggish intercalation kinetics of multivalent ions.


Sign in / Sign up

Export Citation Format

Share Document