scholarly journals Sulfur-Doped Graphdiyne as a High-Capacity Anode Material for Lithium-Ion Batteries

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1161
Author(s):  
Fanan Kong ◽  
Yong Yue ◽  
Qingyin Li ◽  
Shijie Ren

Heteroatom doping is regarded as a promising approach to enhance the electrochemical performance of carbon materials, while the poor controllability of heteroatoms remains the main challenge. In this context, sulfur-doped graphdiyne (S-GDY) was successfully synthesized on the surface of copper foil using a sulfur-containing multi-acetylene monomer to form a uniform film. The S-GDY film possesses a porous structure and abundant sulfur atoms decorated homogeneously in the carbon skeleton, which facilitate the fast diffusion and storage of lithium ions. The lithium-ion batteries (LIBs) fabricated with S-GDY as anode exhibit excellent performance, including the high specific capacity of 920 mA h g−1 and superior rate performances. The LIBs also show long-term cycling stability under the high current density. This result could potentially provide a modular design principle for the construction of high-performance anode materials for lithium-ion batteries.

2012 ◽  
Vol 1440 ◽  
Author(s):  
Jiajia Tan ◽  
Ashutosh Tiwari

ABSTRACTLi2FeP2O7 is a newly developed polyanionic cathode material for high performance lithium ion batteries. It is considered very attractive due to its large specific capacity, good thermal and chemical stability, and environmental benignity. However, the application of Li2FeP2O7 is limited by its low ionic and electronic conductivities. To overcome the above problem, a solution-based technique was successfully developed to synthesize Li2FeP2O7 powders with very fine and uniform particle size (< 1 μm), achieving much faster kinetics. The obtained Li2FeP2O7 powders were tested in lithium ion batteries by measurements of cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge cycling. We found that the modified Li2FeP2O7 cathode could maintain a relatively high capacity even at fast discharge rates.


2016 ◽  
Vol 4 (19) ◽  
pp. 7185-7189 ◽  
Author(s):  
Youguo Huang ◽  
Qichang Pan ◽  
Hongqiang Wang ◽  
Cheng Ji ◽  
Xianming Wu ◽  
...  

Sn@SnO2@C nanosheets decorated with MoS2 are prepared via a facile ball milling and hydrothermal method, and the Sn@SnO2@C@MoS2 composite shows high capacity and long-term cycling stability when used as an anode material for lithium-ion batteries.


2021 ◽  
Vol 22 (19) ◽  
pp. 10331
Author(s):  
Marta Cabello ◽  
Emanuele Gucciardi ◽  
Guillermo Liendo ◽  
Leire Caizán-Juananera ◽  
Daniel Carriazo ◽  
...  

Silicon–graphite (Si@G) anodes are receiving increasing attention because the incorporation of Si enables lithium-ion batteries to reach higher energy density. However, Si suffers from structure rupture due to huge volume changes (ca. 300%). The main challenge for silicon-based anodes is improving their long-term cyclabilities and enabling their charge at fast rates. In this work, we investigate the performance of Si@G composite anode, containing 30 wt.% Si, coupled with a LiNi0.8Co0.15Al0.05O2 (NCA) cathode in a pouch cell configuration. To the best of our knowledge, this is the first report on an NCA/Si@G pouch cell cycled at the 5C rate that delivers specific capacity values of 87 mAh g−1. Several techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and gas chromatography–mass spectrometry (GC–MS) are used to elucidate whether the electrodes and electrolyte suffer irreversible damage when a high C-rate cycling regime is applied, revealing that, in this case, electrode and electrolyte degradation is negligible.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Manisha Phadatare ◽  
Rohan Patil ◽  
Nicklas Blomquist ◽  
Sven Forsberg ◽  
Jonas Örtegren ◽  
...  

Abstract To increase the energy storage density of lithium-ion batteries, silicon anodes have been explored due to their high capacity. One of the main challenges for silicon anodes are large volume variations during the lithiation processes. Recently, several high-performance schemes have been demonstrated with increased life cycles utilizing nanomaterials such as nanoparticles, nanowires, and thin films. However, a method that allows the large-scale production of silicon anodes remains to be demonstrated. Herein, we address this question by suggesting new scalable nanomaterial-based anodes. Si nanoparticles were grown on nanographite flakes by aerogel fabrication route from Si powder and nanographite mixture using polyvinyl alcohol (PVA). This silicon-nanographite aerogel electrode has stable specific capacity even at high current rates and exhibit good cyclic stability. The specific capacity is 455 mAh g−1 for 200th cycles with a coulombic efficiency of 97% at a current density 100 mA g−1.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1467
Author(s):  
Xuanni Lin ◽  
Zhuoyi Yang ◽  
Anru Guo ◽  
Dong Liu

High energy density batteries with high performance are significantly important for intelligent electrical vehicular systems. Iron sulfurs are recognized as one of the most promising anodes for high energy density lithium-ion batteries because of their high theoretical specific capacity and relatively stable electrochemical performance. However, their large-scale commercialized application for lithium-ion batteries are plagued by high-cost and complicated preparation methods. Here, we report a simple and cost-effective method for the scalable synthesis of nanoconfined FeS in porous carbon (defined as FeS@C) as anodes by direct pyrolysis of an iron(III) p-toluenesulfonate precursor. The carbon architecture embedded with FeS nanoparticles provides a rapid electron transport property, and its hierarchical porous structure effectively enhances the ion transport rate, thereby leading to a good electrochemical performance. The resultant FeS@C anodes exhibit high reversible capacity and long cycle life up to 500 cycles at high current density. This work provides a simple strategy for the mass production of FeS@C particles, which represents a critical step forward toward practical applications of iron sulfurs anodes.


Ionics ◽  
2019 ◽  
Vol 26 (2) ◽  
pp. 1057-1061
Author(s):  
Youzuo Hu ◽  
Xingquan Liu

AbstractOne-dimensional (1D) α-LiFeO2 nanorods are successfully prepared via a low-temperature solid-state reaction from α-FeOOH nanorods synthesized by hydrothermal process and used as cathode materials in lithium-ion batteries. As cathode material for lithium-ion batteries, the nanorods can achieve a high initial specific capacity of 165.85 mAh/g at 0.1 C for which a high capacity retention of 81.65% can still be obtained after 50 cycles. The excellent performance and cycling stability are attributed to the unique 1D nanostructure, which facilitates the rapid electron exchange and fast lithium-ion diffusion between electrolyte and cathode materials.


MRS Advances ◽  
2018 ◽  
Vol 3 (60) ◽  
pp. 3519-3524
Author(s):  
Gaind P. Pandey ◽  
Kobi Jones ◽  
Emery Brown ◽  
Jun Li ◽  
Lamartine Meda

ABSTRACTThis study reports a high-performance tin (Sn)-coated vertically aligned carbon nanofiber array anode for lithium-ion batteries. The array electrodes have been prepared by coaxial sputter-coating of tin (Sn) shells on vertically aligned carbon nanofiber (VACNF) cores. The robust brush-like highly conductive VACNFs effectively connect high-capacity Sn shells for lithium-ion storage. A high specific capacity of 815 mAh g-1 of Sn was obtained at C/20 rate, reaching toward the maximum value of Sn. However, the electrode shows poor cycling performance with conventional LiPF6 based organic electrolyte. The addition of fluoroethylene carbonate (FEC) improve the performance significantly and the Sn-coated VACNFs anode shows stable cycling performance. The Sn-coated VACNF array anodes exhibit outstanding capacity retention in the half-cell tests with electrolyte containing 10 wt.% FEC and could deliver a reversible capacity of 480 mAh g-1 after 50 cycles at C/3 rate.


2021 ◽  
Vol 10 (1) ◽  
pp. 210-220
Author(s):  
Fangfang Wang ◽  
Ruoyu Hong ◽  
Xuesong Lu ◽  
Huiyong Liu ◽  
Yuan Zhu ◽  
...  

Abstract The high-nickel cathode material of LiNi0.8Co0.15Al0.05O2 (LNCA) has a prospective application for lithium-ion batteries due to the high capacity and low cost. However, the side reaction between the electrolyte and the electrode seriously affects the cycling stability of lithium-ion batteries. In this work, Ni2+ preoxidation and the optimization of calcination temperature were carried out to reduce the cation mixing of LNCA, and solid-phase Al-doping improved the uniformity of element distribution and the orderliness of the layered structure. In addition, the surface of LNCA was homogeneously modified with ZnO coating by a facile wet-chemical route. Compared to the pristine LNCA, the optimized ZnO-coated LNCA showed excellent electrochemical performance with the first discharge-specific capacity of 187.5 mA h g−1, and the capacity retention of 91.3% at 0.2C after 100 cycles. The experiment demonstrated that the improved electrochemical performance of ZnO-coated LNCA is assigned to the surface coating of ZnO which protects LNCA from being corroded by the electrolyte during cycling.


Sign in / Sign up

Export Citation Format

Share Document