multivalent ions
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 46)

H-INDEX

34
(FIVE YEARS 5)

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4284
Author(s):  
María Fernanda Bósquez-Cáceres ◽  
Sandra Hidalgo-Bonilla ◽  
Vivian Morera Córdova ◽  
Rose M. Michell ◽  
Juan P. Tafur

The diversification of current forms of energy storage and the reduction of fossil fuel consumption are issues of high importance for reducing environmental pollution. Zinc and magnesium are multivalent ions suitable for the development of environmentally friendly rechargeable batteries. Nanocomposite polymer electrolytes (NCPEs) are currently being researched as part of electrochemical devices because of the advantages of dispersed fillers. This article aims to review and compile the trends of different types of the latest NCPEs. It briefly summarizes the desirable properties the electrolytes should possess to be considered for later uses. The first section is devoted to NCPEs composed of poly(vinylidene Fluoride-co-Hexafluoropropylene). The second section centers its attention on discussing the electrolytes composed of poly(ethylene oxide). The third section reviews the studies of NCPEs based on different synthetic polymers. The fourth section discusses the results of electrolytes based on biopolymers. The addition of nanofillers improves both the mechanical performance and the ionic conductivity; key points to be explored in the production of batteries. These results set an essential path for upcoming studies in the field. These attempts need to be further developed to get practical applications for industry in large-scale polymer-based electrolyte batteries.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kefu Zhu ◽  
Shiqiang Wei ◽  
Hongwei Shou ◽  
Feiran Shen ◽  
Shuangming Chen ◽  
...  

AbstractDefect engineering is a strategy that is attracting widespread attention for the possibility of modifying battery active materials in order to improve the cycling stability of the electrodes. However, accurate investigation and quantification of the effect of the defects on the electrochemical energy storage performance of the cell are not trivial tasks. Herein, we report the quantification of vanadium-defective clusters (i.e., up to 5.7%) in the V2O3 lattice via neutron and X-ray powder diffraction measurements, positron annihilation lifetime spectroscopy, and synchrotron-based X-ray analysis. When the vanadium-defective V2O3 is employed as cathode active material in an aqueous Zn coin cell configuration, capacity retention of about 81% after 30,000 cycles at 5 A g−1 is achieved. Density functional theory calculations indicate that the vanadium-defective clusters can provide favorable sites for reversible Zn-ion storage. Moreover, the vanadium-defective clusters allow the storage of Zn ions in V2O3, which reduces the electrostatic interaction between the host material and the multivalent ions.


2021 ◽  
Author(s):  
Subhankar Pandit ◽  
Sarathi Kundu

Abstract Globular proteins play several essential roles in functioning different mechanisms of the living organisms, and the stability of such protein molecules in an aqueous solution is strongly affected by multivalent ions. In this article, we have systematically studied the effect of temperature (between 5 and 25ºC) on the re-entrant condensation behaviour of bovine serum albumin (BSA) in the presence of trivalent ions, Yttrium (Y3+), and Lanthanum (La3+). The effect of temperature is explained considering the optical properties of the protein, i.e., from the optical absorption and emission behaviours. The absorption in the visible region and the fluorescence emission of BSA becomes maximum at the lowest temperature. The decrement of mobility at lower temperature is responsible for fluorescence enhancement. Moreover, the activation energy of the turbid or viscus phase of the BSA protein under re-entrant condensation is enhanced in comparison with the transparent phase and the corresponding energy value is estimated from the fluorescence study.


2021 ◽  
Author(s):  
Michael Jacobs ◽  
Carlos G. Lopez ◽  
Andrey V. Dobrynin

Langmuir ◽  
2021 ◽  
Vol 37 (40) ◽  
pp. 11869-11879
Author(s):  
Bojana Katana ◽  
Dóra Takács ◽  
Adél Szerlauth ◽  
Szilárd Sáringer ◽  
Gábor Varga ◽  
...  

2021 ◽  
Author(s):  
Dimiter N Petsev ◽  
Frank van Swol ◽  
Laura J D Frink

2021 ◽  
Vol 118 (38) ◽  
pp. e2111549118
Author(s):  
Jinlin Yang ◽  
Jibiao Li ◽  
Wenbin Gong ◽  
Fengxia Geng

Rechargeable magnesium batteries represent a viable alternative to lithium-ion technology that can potentially overcome its safety, cost, and energy density limitations. Nevertheless, the development of a competitive room temperature magnesium battery has been hindered by the sluggish dissociation of electrolyte complexes and the low mobility of Mg2+ ions in solids, especially in metal oxides that are generally used in lithium-ion batteries. Herein, we introduce a generic proton-assisted method for the dissociation of the strong Mg–Cl bond to enable genuine Mg2+ intercalation into an oxide host lattice; meanwhile, the anisotropic Smoluchowski effect produced by titanium oxide lattices results in unusually fast Mg2+ diffusion kinetics along the atomic trough direction with a record high ion conductivity of 1.8 × 10−4 S ⋅ cm−1 on the same order as polymer electrolyte. The realization of genuine Mg2+ storage and fast diffusion kinetics enabled a rare high-power Mg-intercalation battery with inorganic oxides. The success of this work provides important information on engineering surface and interlayer chemistries of layered materials to tackle the sluggish intercalation kinetics of multivalent ions.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2310
Author(s):  
Emmanuel Karapidakis ◽  
Dimitra Vernardou

Research efforts have been focused on developing multivalent ion batteries because they hold great promise and could be a major advancement in energy storage, since two or three times more charge per ion can be transferred as compared with lithium. However, their application is limited because of the lack of suitable cathode materials to reversibly intercalate multivalent ions. From that perspective, vanadium pentoxide is a promising cathode material because of its low toxicity, ease of synthesis, and layered structure, which provides huge possibilities for the development of energy storage devices. In this mini review, the general strategies required for the improvement of reversibility, capacity value, and stability of the cathodes is presented. The role of nanostructural morphologies, structure, and composites on the performance of vanadium pentoxide in the last five years is addressed. Finally, perspectives on future directions of the cathodes are proposed.


Sign in / Sign up

Export Citation Format

Share Document