scholarly journals Simultaneous use of electrochemistry and chemiluminescence to detect reactive oxygen species produced by human neutrophils

2008 ◽  
Vol 32 (12) ◽  
pp. 1486-1496 ◽  
Author(s):  
Sergey Shleev ◽  
Jonas Wetterö ◽  
Karl-Eric Magnusson ◽  
Tautgirdas Ruzgas
Blood ◽  
1998 ◽  
Vol 92 (12) ◽  
pp. 4808-4818 ◽  
Author(s):  
Bengt Fadeel ◽  
Anders Åhlin ◽  
Jan-Inge Henter ◽  
Sten Orrenius ◽  
Mark B. Hampton

Abstract Human neutrophils have a short half-life and are believed to die by apoptosis or programmed cell death both in vivo and in vitro. We found that caspases are activated in a time-dependent manner in neutrophils undergoing spontaneous apoptosis, concomitant with other characteristic features of apoptotic cell death such as morphologic changes, phosphatidylserine (PS) exposure, and DNA fragmentation. The treatment of neutrophils with agonistic anti-Fas monoclonal antibodies (MoAbs) significantly accelerated this process. However, in cells treated with the potent neutrophil activator phorbol 12-myristate 13-acetate (PMA), caspase activity was only evident after pharmacologic inhibition of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Similarily, inhibition of the NADPH oxidase in constitutive and Fas/APO-1–triggered apoptosis resulted in increased rather than suppressed levels of caspase activity, suggesting that reactive oxygen species may prevent caspases from functioning optimally in these cells. Moreover, oxidants generated via the NADPH oxidase were essential for PS exposure during PMA-induced cell death, but not for neutrophils undergoing spontaneous apoptosis. We conclude that caspases are an important component of constitutive and Fas/APO-1–triggered neutrophil apoptosis. However, these redox sensitive enzymes are suppressed in activated neutrophils, and an alternate oxidant-dependent pathway is used to mediate PS exposure and neutrophil clearance under these conditions.


2013 ◽  
Vol 114 (3) ◽  
pp. 532-540 ◽  
Author(s):  
Ravi S. Keshari ◽  
Anupam Verma ◽  
Manoj K. Barthwal ◽  
Madhu Dikshit

2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Mélanie R. Tardif ◽  
Julie Andrea Chapeton-Montes ◽  
Alma Posvandzic ◽  
Nathalie Pagé ◽  
Caroline Gilbert ◽  
...  

S100A8/A9 (calprotectin) and S100A12 proinflammatory mediators are found at inflammatory sites and in the serum of patients with inflammatory or autoimmune diseases. These cytoplasmic proteins are secreted by neutrophils at sites of inflammation via alternative secretion pathways of which little is known. This study examined the nature of the stimuli leading to S100A8/A9 and S100A12 secretion as well as the mechanism involved in this alternative secretion pathway. Chemotactic agents, cytokines, and particulate molecules were used to stimulate human neutrophils. MSU crystals, PMA, and H2O2induced the release of S100A8, S100A9, and S100A12 homodimers, as well as S100A8/A9 heterodimer. High concentrations of S100A8/A9 and S100A12 were secreted in response to nanoparticles like MSU, silica, TiO2, fullerene, and single-wall carbon nanotubes as well as in response to microbe-derived molecules, such as zymosan or HKCA. However, neutrophils exposed to the chemotactic factors fMLP failed to secrete S100A8/A9 or S100A12. Secretion of S100A8/A9 was dependent on the production of reactive oxygen species and required K+exchanges through the ATP-sensitive K+channel. Altogether, these findings suggest that S100A12 and S100A8/A9 are secreted independently either via distinct mechanisms of secretion or following the activation of different signal transduction pathways.


Helicobacter ◽  
2002 ◽  
Vol 7 (3) ◽  
pp. 170-174 ◽  
Author(s):  
Tadashi Shimoyama ◽  
Shinsaku Fukuda ◽  
Qiang Liu ◽  
Shigeyuki Nakaji ◽  
Yoshihiro Fukuda ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Mbaki Muzila ◽  
Kimmo Rumpunen ◽  
Helen Wright ◽  
Helen Roberts ◽  
Melissa Grant ◽  
...  

Harpagophytum, Devil’s Claw, is a genus of tuberiferous xerophytic plants native to southern Africa. Some of the taxa are appreciated for their medicinal effects and have been traditionally used to relieve symptoms of inflammation. The objectives of this pilot study were to investigate the antioxidant capacity and the content of total phenols, verbascoside, isoverbascoside, and selected iridoids, as well as to investigate the capacity of variousHarpagophytumtaxa in suppressing respiratory burst in terms of reactive oxygen species produced by human neutrophils challenged with phorbol myristate acetate (PMA), opsonisedStaphylococcus aureus,andFusobacterium nucleatum.Harpagophytumplants were classified into different taxa according to morphology, and DNA analysis was used to confirm the classification. A putative new variety ofH. procumbensshowed the highest degree of antioxidative capacity. Using PMA, threeHarpagophytumtaxa showed anti-inflammatory effects with regard to the PBS control. A putative hybrid betweenH. procumbensandH. zeyheriin contrast showed proinflammatory effect on the response of neutrophils toF. nucleatumin comparison with treatment with vehicle control.Harpagophytumtaxa were biochemically very variable and the response in suppressing respiratory burst differed. Further studies with larger number of subjects are needed to corroborate anti-inflammatory effects of different taxa ofHarpagophytum.


Sign in / Sign up

Export Citation Format

Share Document