scholarly journals Alteration of Neutrophil Reactive Oxygen Species Production by Extracts of Devil’s Claw (Harpagophytum)

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Mbaki Muzila ◽  
Kimmo Rumpunen ◽  
Helen Wright ◽  
Helen Roberts ◽  
Melissa Grant ◽  
...  

Harpagophytum, Devil’s Claw, is a genus of tuberiferous xerophytic plants native to southern Africa. Some of the taxa are appreciated for their medicinal effects and have been traditionally used to relieve symptoms of inflammation. The objectives of this pilot study were to investigate the antioxidant capacity and the content of total phenols, verbascoside, isoverbascoside, and selected iridoids, as well as to investigate the capacity of variousHarpagophytumtaxa in suppressing respiratory burst in terms of reactive oxygen species produced by human neutrophils challenged with phorbol myristate acetate (PMA), opsonisedStaphylococcus aureus,andFusobacterium nucleatum.Harpagophytumplants were classified into different taxa according to morphology, and DNA analysis was used to confirm the classification. A putative new variety ofH. procumbensshowed the highest degree of antioxidative capacity. Using PMA, threeHarpagophytumtaxa showed anti-inflammatory effects with regard to the PBS control. A putative hybrid betweenH. procumbensandH. zeyheriin contrast showed proinflammatory effect on the response of neutrophils toF. nucleatumin comparison with treatment with vehicle control.Harpagophytumtaxa were biochemically very variable and the response in suppressing respiratory burst differed. Further studies with larger number of subjects are needed to corroborate anti-inflammatory effects of different taxa ofHarpagophytum.

2008 ◽  
Vol 32 (12) ◽  
pp. 1486-1496 ◽  
Author(s):  
Sergey Shleev ◽  
Jonas Wetterö ◽  
Karl-Eric Magnusson ◽  
Tautgirdas Ruzgas

Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1155
Author(s):  
Olga Witkowska-Piłaszewicz ◽  
Rafał Pingwara ◽  
Anna Winnicka

Physical activity has an influence on a variety of processes in an athlete’s organism including the immune system. Unfortunately, there is a lack of studies regarding racehorse immune cells, especially when the horse model is compared to human exercise physiology. The aim of the study was to determine changes in immune cell proliferation, lymphocyte populations, and monocyte functionality in trained and untrained racehorses after exercise. In this study, field data were collected. The cells from 28 racehorses (14 untrained and 14 well-trained) were collected before and after exercise (800 m at a speed of about 800 m/min) and cultured for 4 days. The expression of CD4, CD8, FoxP3, CD14, MHCII, and CD5 in PBMC, and reactive oxygen species (ROS) production, as well as cell proliferation, were evaluated by flow cytometry. In addition, IL-1β, IL-4, IL-6, IL-10, IL-17, INF-γ, and TNF-α concentrations were evaluated by ELISA. The creation of an anti-inflammatory environment in well-trained horses was confirmed. In contrast, a pro-inflammatory reaction occurred in untrained horses after training. In conclusion, an anti-inflammatory state occurs in well-trained racehorses, which is an adaptational reaction to an increased workload during training.


2020 ◽  
Vol 21 (15) ◽  
pp. 5556 ◽  
Author(s):  
Abdalmenem I. M. Hawamda ◽  
Adil Zahoor ◽  
Amjad Abbas ◽  
Muhammad Amjad Ali ◽  
Holger Bohlmann

Reactive oxygen species are a byproduct of aerobic metabolic processes but are also produced by plants in defense against pathogens. In addition, they can function as signaling molecules that control various aspects of plant life, ranging from developmental processes to responses to abiotic and biotic stimuli. In plants, reactive oxygen species can be produced by respiratory burst oxidase homologues. Arabidopsis contains 10 genes for respiratory burst oxidase homologues that are involved in different aspects of plant life. Plant pathogenic cyst nematodes such as Heterodera schachtii induce a syncytium in the roots of host plants that becomes a feeding site which supplies nutrients throughout the life of the nematode. In line with this function, the transcriptome of the syncytium shows drastic changes. One of the genes that is most strongly downregulated in syncytia codes for respiratory burst oxidase homologue B. This gene is root-specific and we confirm here the downregulation in nematode feeding sites with a promoter::GUS (β-glucuronidase) line. Overexpression of this gene resulted in enhanced resistance against nematodes but also against leaf-infecting pathogens. Thus, respiratory burst oxidase homologue B has a role in resistance. The function of this gene is in contrast to respiratory burst oxidase homologues D and F, which have been found to be needed for full susceptibility of Arabidopsis to H. schachtii. However, our bioinformatic analysis did not find differences between these proteins that could account for the opposed function in the interaction with nematodes.


Blood ◽  
1998 ◽  
Vol 92 (12) ◽  
pp. 4808-4818 ◽  
Author(s):  
Bengt Fadeel ◽  
Anders Åhlin ◽  
Jan-Inge Henter ◽  
Sten Orrenius ◽  
Mark B. Hampton

Abstract Human neutrophils have a short half-life and are believed to die by apoptosis or programmed cell death both in vivo and in vitro. We found that caspases are activated in a time-dependent manner in neutrophils undergoing spontaneous apoptosis, concomitant with other characteristic features of apoptotic cell death such as morphologic changes, phosphatidylserine (PS) exposure, and DNA fragmentation. The treatment of neutrophils with agonistic anti-Fas monoclonal antibodies (MoAbs) significantly accelerated this process. However, in cells treated with the potent neutrophil activator phorbol 12-myristate 13-acetate (PMA), caspase activity was only evident after pharmacologic inhibition of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Similarily, inhibition of the NADPH oxidase in constitutive and Fas/APO-1–triggered apoptosis resulted in increased rather than suppressed levels of caspase activity, suggesting that reactive oxygen species may prevent caspases from functioning optimally in these cells. Moreover, oxidants generated via the NADPH oxidase were essential for PS exposure during PMA-induced cell death, but not for neutrophils undergoing spontaneous apoptosis. We conclude that caspases are an important component of constitutive and Fas/APO-1–triggered neutrophil apoptosis. However, these redox sensitive enzymes are suppressed in activated neutrophils, and an alternate oxidant-dependent pathway is used to mediate PS exposure and neutrophil clearance under these conditions.


2013 ◽  
Vol 114 (3) ◽  
pp. 532-540 ◽  
Author(s):  
Ravi S. Keshari ◽  
Anupam Verma ◽  
Manoj K. Barthwal ◽  
Madhu Dikshit

Sign in / Sign up

Export Citation Format

Share Document