Intersectin 1 forms a complex with adaptor protein Ruk/CIN85 in vivo independently of epidermal growth factor stimulation

2009 ◽  
Vol 21 (5) ◽  
pp. 753-759 ◽  
Author(s):  
Oleksii Nikolaienko ◽  
Inessa Skrypkina ◽  
Liudmyla Tsyba ◽  
Yaroslav Fedyshyn ◽  
Dmytro Morderer ◽  
...  
2008 ◽  
Vol 180 (6) ◽  
pp. 1205-1218 ◽  
Author(s):  
Ingrid Roxrud ◽  
Camilla Raiborg ◽  
Nina Marie Pedersen ◽  
Espen Stang ◽  
Harald Stenmark

Down-regulation of activated and ubiquitinated growth factor (GF) receptors by endocytosis and subsequent lysosomal degradation ensures attenuation of GF signaling. The ubiquitin-binding adaptor protein Eps15 (epidermal growth factor receptor [EGFR] pathway substrate 15) functions in endocytosis of such receptors. Here, we identify an Eps15 isoform, Eps15b, and demonstrate its expression in human cells and conservation across vertebrate species. Although both Eps15 and Eps15b interact with the endosomal sorting protein Hrs (hepatocyte growth factor–regulated tyrosine kinase substrate) in vitro, we find that Hrs specifically binds Eps15b in vivo (whereas adaptor protein 2 preferentially interacts with Eps15). Although Eps15 mainly localizes to clathrin-coated pits at the plasma membrane, Eps15b localizes to Hrs-positive microdomains on endosomes. Eps15b overexpression, similarly to Hrs overexpression, inhibits ligand-mediated degradation of EGFR, whereas Eps15 is without effect. Similarly, depletion of Eps15b but not Eps15 delays degradation and promotes recycling of EGFR. These results indicate that Eps15b is an endosomally localized isoform of Eps15 that is present in the Hrs complex via direct Hrs interaction and important for the sorting function of this complex.


2009 ◽  
Vol 83 (15) ◽  
pp. 7507-7516 ◽  
Author(s):  
Monique H. Verheije ◽  
Martine L. M. Lamfers ◽  
Thomas Würdinger ◽  
Guy C. M. Grinwis ◽  
Winald R. Gerritsen ◽  
...  

ABSTRACT Coronaviruses are positive-strand RNA viruses with features attractive for oncolytic therapy. To investigate this potential, we redirected the coronavirus murine hepatitis virus (MHV), which is normally unable to infect human cells, to human tumor cells by using a soluble receptor (soR)-based expression construct fused to an epidermal growth factor (EGF) receptor targeting moiety. Addition of this adapter protein to MHV allowed infection of otherwise nonsusceptible, EGF receptor (EGFR)-expressing cell cultures. We introduced the sequence encoding the adaptor protein soR-EGF into the MHV genome to generate a self-targeted virus capable of multiround infection. The resulting recombinant MHV was viable and had indeed acquired the ability to infect all glioblastoma cell lines tested in vitro. Infection of malignant human glioblastoma U87ΔEGFR cells gave rise to release of progeny virus and efficient cell killing in vitro. To investigate the oncolytic capacity of the virus in vivo, we used an orthotopic U87ΔEGFR xenograft mouse model. Treatment of mice bearing a lethal intracranial U87ΔEGFR tumor by injection with MHVsoR-EGF significantly prolonged survival compared to phosphate-buffered saline-treated (P = 0.001) and control virus-treated (P = 0.004) animals, and no recurrent tumor load was observed. However, some adverse effects were seen in normal mouse brain tissues that were likely caused by the natural murine tropism of MHV. This is the first demonstration of oncolytic activity of a coronavirus in vivo. It suggests that nonhuman coronaviruses may be attractive new therapeutic agents against human tumors.


1986 ◽  
Vol 261 (18) ◽  
pp. 8473-8480
Author(s):  
D G Kay ◽  
W H Lai ◽  
M Uchihashi ◽  
M N Khan ◽  
B I Posner ◽  
...  

Biomaterials ◽  
2013 ◽  
Vol 34 (36) ◽  
pp. 9149-9159 ◽  
Author(s):  
Ju Hee Ryu ◽  
Miyoung Shin ◽  
Sun Ah Kim ◽  
Sangmin Lee ◽  
Hyunjoon Kim ◽  
...  

2006 ◽  
Vol 26 (2) ◽  
pp. 389-401 ◽  
Author(s):  
Lene E. Johannessen ◽  
Nina Marie Pedersen ◽  
Ketil Winther Pedersen ◽  
Inger Helene Madshus ◽  
Espen Stang

ABSTRACT In HeLa cells depleted of adaptor protein 2 complex (AP2) by small interfering RNA (siRNA) to the μ2 or α subunit or by transient overexpression of an AP2 sequestering mutant of Eps15, endocytosis of the transferrin receptor (TfR) was strongly inhibited. However, epidermal growth factor (EGF)-induced endocytosis of the EGF receptor (EGFR) was inhibited only in cells where the α subunit had been knocked down. By immunoelectron microscopy, we found that in AP2-depleted cells, the number of clathrin-coated pits was strongly reduced. When such cells were incubated with EGF, new coated pits were formed. These contained EGF, EGFR, clathrin, and Grb2 but not the TfR. The induced coated pits contained the α subunit, but labeling density was reduced compared to control cells. Induction of clathrin-coated pits required EGFR kinase activity. Overexpression of Grb2 with inactivating point mutations in N- or C-terminal SH3 domains or in both SH3 domains inhibited EGF-induced formation of coated pits efficiently, even though Grb2 SH3 mutations did not block activation of mitogen-activated protein kinase (MAPK) or phosphatidylinositol 3-kinase (PI3K). Our data demonstrate that EGFR-induced signaling and Grb2 are essential for formation of clathrin-coated pits accommodating the EGFR, while activation of MAPK and PI3K is not required.


Sign in / Sign up

Export Citation Format

Share Document