scholarly journals Coronavirus Genetically Redirected to the Epidermal Growth Factor Receptor Exhibits Effective Antitumor Activity against a Malignant Glioblastoma

2009 ◽  
Vol 83 (15) ◽  
pp. 7507-7516 ◽  
Author(s):  
Monique H. Verheije ◽  
Martine L. M. Lamfers ◽  
Thomas Würdinger ◽  
Guy C. M. Grinwis ◽  
Winald R. Gerritsen ◽  
...  

ABSTRACT Coronaviruses are positive-strand RNA viruses with features attractive for oncolytic therapy. To investigate this potential, we redirected the coronavirus murine hepatitis virus (MHV), which is normally unable to infect human cells, to human tumor cells by using a soluble receptor (soR)-based expression construct fused to an epidermal growth factor (EGF) receptor targeting moiety. Addition of this adapter protein to MHV allowed infection of otherwise nonsusceptible, EGF receptor (EGFR)-expressing cell cultures. We introduced the sequence encoding the adaptor protein soR-EGF into the MHV genome to generate a self-targeted virus capable of multiround infection. The resulting recombinant MHV was viable and had indeed acquired the ability to infect all glioblastoma cell lines tested in vitro. Infection of malignant human glioblastoma U87ΔEGFR cells gave rise to release of progeny virus and efficient cell killing in vitro. To investigate the oncolytic capacity of the virus in vivo, we used an orthotopic U87ΔEGFR xenograft mouse model. Treatment of mice bearing a lethal intracranial U87ΔEGFR tumor by injection with MHVsoR-EGF significantly prolonged survival compared to phosphate-buffered saline-treated (P = 0.001) and control virus-treated (P = 0.004) animals, and no recurrent tumor load was observed. However, some adverse effects were seen in normal mouse brain tissues that were likely caused by the natural murine tropism of MHV. This is the first demonstration of oncolytic activity of a coronavirus in vivo. It suggests that nonhuman coronaviruses may be attractive new therapeutic agents against human tumors.

2008 ◽  
Vol 180 (6) ◽  
pp. 1205-1218 ◽  
Author(s):  
Ingrid Roxrud ◽  
Camilla Raiborg ◽  
Nina Marie Pedersen ◽  
Espen Stang ◽  
Harald Stenmark

Down-regulation of activated and ubiquitinated growth factor (GF) receptors by endocytosis and subsequent lysosomal degradation ensures attenuation of GF signaling. The ubiquitin-binding adaptor protein Eps15 (epidermal growth factor receptor [EGFR] pathway substrate 15) functions in endocytosis of such receptors. Here, we identify an Eps15 isoform, Eps15b, and demonstrate its expression in human cells and conservation across vertebrate species. Although both Eps15 and Eps15b interact with the endosomal sorting protein Hrs (hepatocyte growth factor–regulated tyrosine kinase substrate) in vitro, we find that Hrs specifically binds Eps15b in vivo (whereas adaptor protein 2 preferentially interacts with Eps15). Although Eps15 mainly localizes to clathrin-coated pits at the plasma membrane, Eps15b localizes to Hrs-positive microdomains on endosomes. Eps15b overexpression, similarly to Hrs overexpression, inhibits ligand-mediated degradation of EGFR, whereas Eps15 is without effect. Similarly, depletion of Eps15b but not Eps15 delays degradation and promotes recycling of EGFR. These results indicate that Eps15b is an endosomally localized isoform of Eps15 that is present in the Hrs complex via direct Hrs interaction and important for the sorting function of this complex.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Miquella G. Chavez ◽  
Christian A. Buhr ◽  
Whitney K. Petrie ◽  
Angela Wandinger-Ness ◽  
Donna F. Kusewitt ◽  
...  

Modulation of cell : cell junctions is a key event in cutaneous wound repair. In this study we report that activation of the epidermal growth factor (EGF) receptor disrupts cel : cell adhesion, but with different kinetics and fates for the desmosomal cadherin desmoglein and for E-cadherin. Downregulation of desmoglein preceded that of E-cadherinin vivoand in an EGF-stimulatedin vitrowound reepithelialization model. Dual immunofluorescence staining revealed that neither E-cadherin nor desmoglein-2 internalized with the EGF receptor, or with one another. In response to EGF, desmoglein-2 entered a recycling compartment based on predominant colocalization with the recycling marker Rab11. In contrast, E-cadherin downregulation was accompanied by cleavage of the extracellular domain. A broad-spectrum matrix metalloproteinase inhibitor protected E-cadherin but not the desmosomal cadherin, desmoglein-2, from EGF-stimulated disruption. These findings demonstrate that although activation of the EGF receptor regulates adherens junction and desmosomal components, this stimulus downregulates associated cadherins through different mechanisms.


2006 ◽  
Vol 26 (2) ◽  
pp. 389-401 ◽  
Author(s):  
Lene E. Johannessen ◽  
Nina Marie Pedersen ◽  
Ketil Winther Pedersen ◽  
Inger Helene Madshus ◽  
Espen Stang

ABSTRACT In HeLa cells depleted of adaptor protein 2 complex (AP2) by small interfering RNA (siRNA) to the μ2 or α subunit or by transient overexpression of an AP2 sequestering mutant of Eps15, endocytosis of the transferrin receptor (TfR) was strongly inhibited. However, epidermal growth factor (EGF)-induced endocytosis of the EGF receptor (EGFR) was inhibited only in cells where the α subunit had been knocked down. By immunoelectron microscopy, we found that in AP2-depleted cells, the number of clathrin-coated pits was strongly reduced. When such cells were incubated with EGF, new coated pits were formed. These contained EGF, EGFR, clathrin, and Grb2 but not the TfR. The induced coated pits contained the α subunit, but labeling density was reduced compared to control cells. Induction of clathrin-coated pits required EGFR kinase activity. Overexpression of Grb2 with inactivating point mutations in N- or C-terminal SH3 domains or in both SH3 domains inhibited EGF-induced formation of coated pits efficiently, even though Grb2 SH3 mutations did not block activation of mitogen-activated protein kinase (MAPK) or phosphatidylinositol 3-kinase (PI3K). Our data demonstrate that EGFR-induced signaling and Grb2 are essential for formation of clathrin-coated pits accommodating the EGFR, while activation of MAPK and PI3K is not required.


1994 ◽  
Vol 14 (3) ◽  
pp. 1575-1581
Author(s):  
G J Pronk ◽  
A M de Vries-Smits ◽  
L Buday ◽  
J Downward ◽  
J A Maassen ◽  
...  

Shc proteins are phosphorylated on tyrosine residues and associate with growth factor receptor-bound protein 2 (Grb2) upon treatment of cells with epidermal growth factor (EGF) or insulin. We have studied the role of Shc in insulin- and EGF-induced activation of p21ras in NIH 3T3 cells overexpressing human insulin receptors (A14 cells). A14 cells are equally responsive to insulin and EGF with respect to activation of p21ras. Analysis of Shc immunoprecipitates revealed that (i) both insulin and EGF treatment resulted in Shc tyrosine phosphorylation and (ii) Shc antibodies coimmunoprecipitated both Grb2 and mSOS after insulin and EGF treatment. The induction of tyrosine phosphorylation of Shc and the presence of Grb2 and mSOS in Shc immunoprecipitates followed similar time courses, with somewhat higher levels after EGF treatment. In mSOS immunoprecipitates, Shc could be detected as well. Furthermore, Shc immune complexes contained guanine nucleotide exchange activity toward p21ras in vitro. From these results, we conclude that after insulin and EGF treatment, Shc associates with both Grb2 and mSOS and therefore may mediate, at least in part, insulin- and EGF-induced activation of p21ras. In addition, we investigated whether the Grb2-mSOS complex associates with the insulin receptor or with insulin receptor substrate 1 (IRS1). Although we observed association of Grb2 with IRS1, we did not detect complex formation between mSOS and IRS1 in experiments in which the association of mSOS with Shc was readily detectable. Furthermore, whereas EGF treatment resulted in the association of mSOS with the EGF receptor, insulin treatment did not result in the association of mSOS with the insulin receptor. These results indicate that the association of Grb2-nSOS with Shc may be an important event in insulin-induced, mSOS-mediated activation of p21ras.


Sign in / Sign up

Export Citation Format

Share Document