scholarly journals De Novo Sequence and Copy Number Variants Are Strongly Associated with Tourette Disorder and Implicate Cell Polarity in Pathogenesis

Cell Reports ◽  
2018 ◽  
Vol 24 (13) ◽  
pp. 3441-3454.e12 ◽  
Author(s):  
Sheng Wang ◽  
Jeffrey D. Mandell ◽  
Yogesh Kumar ◽  
Nawei Sun ◽  
Montana T. Morris ◽  
...  
2018 ◽  
Author(s):  
Sheng Wang ◽  
Jeffrey D. Mandelll ◽  
Yogesh Kumarr ◽  
Nawei Sunn ◽  
Montana T. Morris ◽  
...  

Cell Reports ◽  
2018 ◽  
Vol 25 (12) ◽  
pp. 3544 ◽  
Author(s):  
Sheng Wang ◽  
Jeffrey D. Mandell ◽  
Yogesh Kumar ◽  
Nawei Sun ◽  
Montana T. Morris ◽  
...  

Author(s):  
Joanna Martin ◽  
Grace Hosking ◽  
Megan Wadon ◽  
Sharifah Shameem Agha ◽  
Kate Langley ◽  
...  

AbstractBackgroundRecent case-control genetic studies of attention deficit hyperactivity disorder (ADHD) have implicated common and rare genetic risk alleles, highlighting the polygenic and complex aetiology of this neurodevelopmental disorder. Studies of other neurodevelopmental disorders, such as autism spectrum disorder (ASD), Tourette disorder, developmental delay/intellectual disability, and schizophrenia indicate that identification of specific risk alleles and additional insights into disorder biology can be gained by studying non-inherited de novo variation. In this study, we aimed to identify large de novo copy number variants (CNVs) in children with ADHD.MethodsChildren with a confirmed diagnosis of ADHD and their parents were genotyped and included in this sample. We used PennCNV to call large (>200kb) CNVs and identified those calls that were present in the proband and absent in both biological parents.ResultsIn 305 parent-offspring trios, we detected 14 de novo CNVs in 13 probands, giving a mutation rate of 4.6% and a per individual rate of 4.3%. This rate is higher than published reports in controls and similar to those observed for ASD, schizophrenia and Tourette disorder. We also identified de novo mutations at 4 genomic loci (15q13.1-13.2 duplication, 16p13.11 duplication, 16p12.2 deletion and 22q11.21 duplication) that have previously been implicated in other neurodevelopmental disorders, two of which (16p13.11 and 22q11.21) have also been implicated in case-control ADHD studies.ConclusionsOur study complements ADHD case-control genomic analyses and demonstrates the need for larger parent-offspring trio genetic studies to gain further insights into the complex aetiology of ADHD.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Leandro de Araújo Lima ◽  
Ana Cecília Feio-dos-Santos ◽  
Sintia Iole Belangero ◽  
Ary Gadelha ◽  
Rodrigo Affonseca Bressan ◽  
...  

Abstract Many studies have attempted to investigate the genetic susceptibility of Attention-Deficit/Hyperactivity Disorder (ADHD), but without much success. The present study aimed to analyze both single-nucleotide and copy-number variants contributing to the genetic architecture of ADHD. We generated exome data from 30 Brazilian trios with sporadic ADHD. We also analyzed a Brazilian sample of 503 children/adolescent controls from a High Risk Cohort Study for the Development of Childhood Psychiatric Disorders, and also previously published results of five CNV studies and one GWAS meta-analysis of ADHD involving children/adolescents. The results from the Brazilian trios showed that cases with de novo SNVs tend not to have de novo CNVs and vice-versa. Although the sample size is small, we could also see that various comorbidities are more frequent in cases with only inherited variants. Moreover, using only genes expressed in brain, we constructed two “in silico” protein-protein interaction networks, one with genes from any analysis, and other with genes with hits in two analyses. Topological and functional analyses of genes in this network uncovered genes related to synapse, cell adhesion, glutamatergic and serotoninergic pathways, both confirming findings of previous studies and capturing new genes and genetic variants in these pathways.


Author(s):  
Jessica Kang ◽  
Chien Nan Lee ◽  
Yi-Ning Su ◽  
Ming-Wei Lin ◽  
Yi-Yun Tai ◽  
...  

Objective: The prenatal genetic counseling of fetus diagnosed with the 15q11.2 copy number variant (CNV) involving the BP1-BP2 region has been difficult due to limited information and controversial opinion on prognosis. Design: Case series. Setting: This study uses data from National Taiwan University Hospital. Sample: Data of 36 pregnant women who underwent prenatal microarray analysis from 2012 to 2017 and were assessed at National Taiwan University Hospital. Methods: Data were collected by reviewing patients’ medical record. Comparison of patient characteristics, prenatal ultrasound findings and postnatal outcomes between different cases involving the 15q11.2 BP1-BP2 region were presented. Main outcome measured: Postnatal prognosis. Results: Out of the 36 patients diagnosed with CNVs involving the BP1-BP2 region, 5 were diagnosed with microduplication and 31 with microdeletion. Abnormal ultrasound findings were recorded in 12 cases prenatally. De novo microduplications were observed in 25% of the cases and microdeletions were found in 14%. Amongst the cases, 10 pregnant women received termination of pregnancy and 26 gave birth to healthy individuals (27 babies in total). Conclusion: The prognoses of 15q11.2 CNVs were controversial and recent studies have revealed its connection with developmental delay and autism. In our study, no obvious developmental delay or neurological disorders were detected postnatally in the 1 case of 15q11.2 microduplication and 25 cases of microdeletion.


Author(s):  
George Kirov ◽  
Michael C. O’Donovan ◽  
Michael J. Owen

Several submicroscopic genomic deletions and duplications known as copy number variants (CNVs) have been reported to increase susceptibility to schizophrenia. Those for which the evidence is particularly strong include deletions at chromosomal segments 1q21.1, 3q29, 15q11.2, 15q13.3, 17q12 and 22q11.2, duplications at 15q11.2-q13.1, 16p13.1, and 16p11.2, and deletions atthe gene NRXN1. The effect of each on individual risk is relatively large, but it does not appear that any of them is alone sufficient to cause disorder in carriers. These CNVs often arise as new mutations(de novo). Analyses of genes enriched among schizophrenia implicated CNVs highlight the involvement in the disorder of post-synaptic processes relevant to glutamatergicsignalling, cognition and learning. CNVs that contribute to schizophrenia risk also contribute to other neurodevelopmental disorders, including intellectual disability, developmental delay and autism. As a result of selection, all known pathogenic CNVs are rare, and none makes a sizeable contribution to overall population risk of schizophrenia, although the study of these mutations is nevertheless providing important insights into the origins of the disorder.


Gene ◽  
2020 ◽  
Vol 735 ◽  
pp. 144393
Author(s):  
Pamela Magini ◽  
Emanuela Scarano ◽  
Ilaria Donati ◽  
Alberto Sensi ◽  
Laura Mazzanti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document