Faculty Opinions recommendation of rDNA Copy Number Variants Are Frequent Passenger Mutations in Saccharomyces cerevisiae Deletion Collections and de Novo Transformants.

Author(s):  
Judith Berman
2016 ◽  
Vol 6 (9) ◽  
pp. 2829-2838 ◽  
Author(s):  
Elizabeth X. Kwan ◽  
Xiaobin S. Wang ◽  
Haley M. Amemiya ◽  
Bonita J. Brewer ◽  
M. K. Raghuraman

2014 ◽  
Vol 35 (3) ◽  
pp. 544-554 ◽  
Author(s):  
Inswasti Cahyani ◽  
Andrew G. Cridge ◽  
David R. Engelke ◽  
Austen R. D. Ganley ◽  
Justin M. O'Sullivan

The spatial organization of eukaryotic genomes is linked to their functions. However, how individual features of the global spatial structure contribute to nuclear function remains largely unknown. We previously identified a high-frequency interchromosomal interaction within theSaccharomyces cerevisiaegenome that occurs between the intergenic spacer of the ribosomal DNA (rDNA) repeats and the intergenic sequence between the locus encoding the second largest RNA polymerase I subunit and a lysine tRNA gene [i.e.,RPA135-tK(CUU)P]. Here, we used quantitative chromosome conformation capture in combination with replacement mapping to identify a 75-bp sequence within theRPA135-tK(CUU)Pintergenic region that is involved in the interaction. We demonstrate that theRPA135-IGS1 interaction is dependent on the rDNA copy number and the Msn2 protein. Surprisingly, we found that the interaction does not governRPA135transcription. Instead, replacement of a 605-bp region within theRPA135-tK(CUU)Pintergenic region results in a reduction in theRPA135-IGS1 interaction level and fluctuations in rDNA copy number. We conclude that the chromosomal interaction that occurs between theRPA135-tK(CUU)Pand rDNA IGS1 loci stabilizes rDNA repeat number and contributes to the maintenance of nucleolar stability. Our results provide evidence that the DNA loci involved in chromosomal interactions are composite elements, sections of which function in stabilizing the interaction or mediating a functional outcome.


2021 ◽  
Author(s):  
Diksha Sharma ◽  
Sylvie Hermann-Le Denmat ◽  
Nicholas J. Matzke ◽  
Katherine Hannan ◽  
Ross D. Hannan ◽  
...  

AbstractRibosomal DNA genes (rDNA) encode the major ribosomal RNAs (rRNA) and in eukaryotic genomes are typically present as one or more arrays of tandem repeats. Species have characteristic rDNA copy numbers, ranging from tens to thousands of copies, with the number thought to be redundant for rRNA production. However, the tandem rDNA repeats are prone to recombination-mediated changes in copy number, resulting in substantial intra-species copy number variation. There is growing evidence that these copy number differences can have phenotypic consequences. However, we lack a comprehensive understanding of what determines rDNA copy number, how it evolves, and what the consequences are, in part because of difficulties in quantifying copy number. Here, we developed a genomic sequence read approach that estimates rDNA copy number from the modal coverage of the rDNA and whole genome to help overcome limitations in quantifying copy number with existing mean coverage-based approaches. We validated our method using strains of the yeast Saccharomyces cerevisiae with previously-determined rDNA copy numbers, and then applied our pipeline to investigate rDNA copy number in a global sample of 788 yeast isolates. We found that wild yeast have a mean copy number of 92, consistent with what is reported for other fungi but much lower than in laboratory strains. We also show that different populations have different rDNA copy numbers. These differences can partially be explained by phylogeny, but other factors such as environment are also likely to contribute to population differences in copy number. Our results demonstrate the utility of the modal coverage method, and highlight the high level of rDNA copy number variation within and between populations.Author summaryThe ribosomal RNA gene repeats (rDNA) form large tandem repeat arrays in most eukaryote genomes. Their tandem arrangement makes the rDNA prone to copy number variation, and there is increasing evidence that this copy number variation has phenotypic consequences. However, difficulties in measuring rDNA copy number hamper investigation into rDNA copy number dynamics and their significance. Here we developed a novel bioinformatics method for measuring rDNA copy number from whole genome sequence data that is based on the modal sequence read coverage. We established parameters for optimal performance of the method and validated it using yeast strains of known rDNA copy numbers. We then applied the method to a dataset of almost 800 global yeast isolates and demonstrate that yeast populations have different rDNA copy numbers that partially correlate with phylogeny. Our work provides a simple and accurate method for determining rDNA copy number that leverages the growing number of whole genome datasets, and highlights the dynamic nature of rDNA copy number.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Leandro de Araújo Lima ◽  
Ana Cecília Feio-dos-Santos ◽  
Sintia Iole Belangero ◽  
Ary Gadelha ◽  
Rodrigo Affonseca Bressan ◽  
...  

Abstract Many studies have attempted to investigate the genetic susceptibility of Attention-Deficit/Hyperactivity Disorder (ADHD), but without much success. The present study aimed to analyze both single-nucleotide and copy-number variants contributing to the genetic architecture of ADHD. We generated exome data from 30 Brazilian trios with sporadic ADHD. We also analyzed a Brazilian sample of 503 children/adolescent controls from a High Risk Cohort Study for the Development of Childhood Psychiatric Disorders, and also previously published results of five CNV studies and one GWAS meta-analysis of ADHD involving children/adolescents. The results from the Brazilian trios showed that cases with de novo SNVs tend not to have de novo CNVs and vice-versa. Although the sample size is small, we could also see that various comorbidities are more frequent in cases with only inherited variants. Moreover, using only genes expressed in brain, we constructed two “in silico” protein-protein interaction networks, one with genes from any analysis, and other with genes with hits in two analyses. Topological and functional analyses of genes in this network uncovered genes related to synapse, cell adhesion, glutamatergic and serotoninergic pathways, both confirming findings of previous studies and capturing new genes and genetic variants in these pathways.


2020 ◽  
Author(s):  
Eriko Watada ◽  
Sihan Li ◽  
Yutaro Hori ◽  
Katsunori Fujiki ◽  
Katsuhiko Shirahige ◽  
...  

AbstractThe ribosomal RNA gene, which consists of tandem repetitive arrays (rDNA repeat), is one of the most unstable regions in the genome. The rDNA repeat in the budding yeast is known to become unstable as the cell ages. However, it is unclear how the rDNA repeat changes in ageing mammalian cells. Using quantitative analyses, we identified age-dependent alterations in rDNA copy number and levels of methylation in mice. The degree of methylation and copy number of rDNA from bone marrow cells of 2-year-old mice were increased by comparison to 4-week-old mice in two mouse strains, BALB/cA and C57BL/6. Moreover, the level of pre-rRNA transcripts was reduced in older BALB/cA mice. We also identified many sequence variations among the repeats with two mutations being unique to old mice. These sequences were conserved in budding yeast and equivalent mutations shortened the yeast chronological lifespan. Our findings suggest that rDNA is also fragile in mammalian cells and alterations within this region have a profound effect on cellular function.Author SummaryThe ribosomal RNA gene (rDNA) is one of the most unstable regions in the genome due to its tandem repetitive structure. rDNA copy number in the budding yeast increases and becomes unstable as the cell ages. It is speculated that the rDNA produces an “aging signal” inducing senescence and death. However, it is unclear how the rDNA repeat changes during the aging process in mammalian cells. In this study, we attempted to identify the age-dependent alteration of rDNA in mice. Using quantitative single cell analysis, we show that rDNA copy number increases in old mice bone marrow cells. By contrast, the level of ribosomal RNA production was reduced because of increased levels of DNA methylation that represses transcription. We also identified many sequence variations in the rDNA. Among them, three mutations were unique to old mice and two of them were found in the conserved region in budding yeast. We then established a yeast strain with the old mouse-specific mutations and found this shortened the lifespan of the cells. These findings suggest that rDNA is also fragile in mammalian cells and alteration to this region of the genome affects cellular senescence.


2018 ◽  
Author(s):  
Sheng Wang ◽  
Jeffrey D. Mandelll ◽  
Yogesh Kumarr ◽  
Nawei Sunn ◽  
Montana T. Morris ◽  
...  

Author(s):  
Jessica Kang ◽  
Chien Nan Lee ◽  
Yi-Ning Su ◽  
Ming-Wei Lin ◽  
Yi-Yun Tai ◽  
...  

Objective: The prenatal genetic counseling of fetus diagnosed with the 15q11.2 copy number variant (CNV) involving the BP1-BP2 region has been difficult due to limited information and controversial opinion on prognosis. Design: Case series. Setting: This study uses data from National Taiwan University Hospital. Sample: Data of 36 pregnant women who underwent prenatal microarray analysis from 2012 to 2017 and were assessed at National Taiwan University Hospital. Methods: Data were collected by reviewing patients’ medical record. Comparison of patient characteristics, prenatal ultrasound findings and postnatal outcomes between different cases involving the 15q11.2 BP1-BP2 region were presented. Main outcome measured: Postnatal prognosis. Results: Out of the 36 patients diagnosed with CNVs involving the BP1-BP2 region, 5 were diagnosed with microduplication and 31 with microdeletion. Abnormal ultrasound findings were recorded in 12 cases prenatally. De novo microduplications were observed in 25% of the cases and microdeletions were found in 14%. Amongst the cases, 10 pregnant women received termination of pregnancy and 26 gave birth to healthy individuals (27 babies in total). Conclusion: The prognoses of 15q11.2 CNVs were controversial and recent studies have revealed its connection with developmental delay and autism. In our study, no obvious developmental delay or neurological disorders were detected postnatally in the 1 case of 15q11.2 microduplication and 25 cases of microdeletion.


Author(s):  
George Kirov ◽  
Michael C. O’Donovan ◽  
Michael J. Owen

Several submicroscopic genomic deletions and duplications known as copy number variants (CNVs) have been reported to increase susceptibility to schizophrenia. Those for which the evidence is particularly strong include deletions at chromosomal segments 1q21.1, 3q29, 15q11.2, 15q13.3, 17q12 and 22q11.2, duplications at 15q11.2-q13.1, 16p13.1, and 16p11.2, and deletions atthe gene NRXN1. The effect of each on individual risk is relatively large, but it does not appear that any of them is alone sufficient to cause disorder in carriers. These CNVs often arise as new mutations(de novo). Analyses of genes enriched among schizophrenia implicated CNVs highlight the involvement in the disorder of post-synaptic processes relevant to glutamatergicsignalling, cognition and learning. CNVs that contribute to schizophrenia risk also contribute to other neurodevelopmental disorders, including intellectual disability, developmental delay and autism. As a result of selection, all known pathogenic CNVs are rare, and none makes a sizeable contribution to overall population risk of schizophrenia, although the study of these mutations is nevertheless providing important insights into the origins of the disorder.


2020 ◽  
Vol 8 (3) ◽  
pp. 316 ◽  
Author(s):  
Yurui Wang ◽  
Yaohan Jiang ◽  
Yongqiang Liu ◽  
Yuan Li ◽  
Laura A. Katz ◽  
...  

While nuclear small subunit ribosomal DNA (nSSU rDNA) is the most commonly-used gene marker in studying phylogeny, ecology, abundance, and biodiversity of microbial eukaryotes, mitochondrial small subunit ribosomal DNA (mtSSU rDNA) provides an alternative. Recently, both copy number variation and sequence variation of nSSU rDNA have been demonstrated for diverse organisms, which can contribute to misinterpretation of microbiome data. Given this, we explore patterns for mtSSU rDNA among 13 selected ciliates (representing five classes), a major component of microbial eukaryotes, estimating copy number and sequence variation and comparing to that of nSSU rDNA. Our study reveals: (1) mtSSU rDNA copy number variation is substantially lower than that for nSSU rDNA; (2) mtSSU rDNA copy number ranges from 1.0 × 104 to 8.1 × 105; (3) a most common sequence of mtSSU rDNA is also found in each cell; (4) the sequence variation of mtSSU rDNA are mainly indels in poly A/T regions, and only half of species have sequence variation, which is fewer than that for nSSU rDNA; and (5) the polymorphisms between haplotypes of mtSSU rDNA would not influence the phylogenetic topology. Together, these data provide more insights into mtSSU rDNA as a powerful marker especially for microbial ecology studies.


Sign in / Sign up

Export Citation Format

Share Document