scholarly journals Cholinergic feedback to bipolar cells contributes to motion detection in the mouse retina

Cell Reports ◽  
2021 ◽  
Vol 37 (11) ◽  
pp. 110106
Author(s):  
Chase B. Hellmer ◽  
Leo M. Hall ◽  
Jeremy M. Bohl ◽  
Zachary J. Sharpe ◽  
Robert G. Smith ◽  
...  
2000 ◽  
Vol 17 (2) ◽  
pp. 273-281 ◽  
Author(s):  
M. KANEDA ◽  
B. ANDRÁSFALVY ◽  
A. KANEKO

The localization of endogenous Zn2+ in the mouse retina was examined histochemically and the inhibitory action of Zn2+ on GABA-induced responses was studied in bipolar cells isolated from the mouse retina. Accumulation of endogenous Zn2+ was detected in photoreceptors, bipolar, and/or amacrine cells by either the bromopyridylazo-diethylaminophenol method or the dithizone method. Under whole-cell recording conditions, GABA induced a Cl− current in isolated bipolar cells. The current consisted of two components. The first component was inhibited completely by application of 100 μM bicuculline, suggesting that this is a GABAA-receptor mediated current. The second component was inhibited completely by 100 μM 3-aminopropyl-(methyl)-phosphinic acid, suggesting that this is a GABAC-receptor mediated current. GABAC receptors were present at a higher density on the axon terminal than on dendrites. Zn2+ inhibited both GABAA and GABAC receptors. GABAC receptors were more susceptible to Zn2+; the IC50 for the GABAA receptor was 67.4 μM and that for the GABAC receptor was 1.9 μM. These results suggest that Zn2+ modulates the inhibitory interaction between amacrine and bipolar cells, particularly that mediated by the GABAC receptor.


2015 ◽  
Vol 56 (8) ◽  
pp. 4961 ◽  
Author(s):  
Wei-Hong Xiong ◽  
Ji-Jie Pang ◽  
Mark E. Pennesi ◽  
Robert M. Duvoisin ◽  
Samuel M. Wu ◽  
...  

2007 ◽  
Vol 507 (1) ◽  
pp. 1087-1101 ◽  
Author(s):  
Silke Haverkamp ◽  
Dana Specht ◽  
Sriparna Majumdar ◽  
Nikhat F. Zaidi ◽  
Johann Helmut Brandstätter ◽  
...  

2018 ◽  
Vol 35 ◽  
Author(s):  
MELINA A. AGOSTO ◽  
IVAN A. ANASTASSOV ◽  
THEODORE G. WENSEL

AbstractThe transient receptor potential channel TRPM1 is required for synaptic transmission between photoreceptors and the ON subtype of bipolar cells (ON-BPC), mediating depolarization in response to light. TRPM1 is present in the somas and postsynaptic dendritic tips of ON-BPCs. Monoclonal antibodies generated against full-length TRPM1 were found to have differential labeling patterns when used to immunostain the mouse retina, with some yielding reduced labeling of dendritic tips relative to the labeling of cell bodies. Epitope mapping revealed that those antibodies that poorly label the dendritic tips share a binding site (N2d) in the N-terminal arm near the transmembrane domain. A major splice variant of TRPM1 lacking exon 19 does not contain the N2d binding site, but quantitative immunoblotting revealed no enrichment of this variant in synaptsomes. One explanation of the differential labeling is masking of the N2d epitope by formation of a synapse-specific multiprotein complex. Identifying the binding partners that are specific for the fraction of TRPM1 present at the synapses is an ongoing challenge for understanding TRPM1 function.


2005 ◽  
Vol 94 (3) ◽  
pp. 1770-1780 ◽  
Author(s):  
Jerome Petit-Jacques ◽  
Béla Völgyi ◽  
Bernardo Rudy ◽  
Stewart Bloomfield

Using patch-clamp techniques, we investigated the characteristics of the spontaneous oscillatory activity displayed by starburst amacrine cells in the mouse retina. At a holding potential of –70 mV, oscillations appeared as spontaneous, rhythmic inward currents with a frequency of ∼3.5 Hz and an average maximal amplitude of ∼120 pA. Application of TEA, a potassium channel blocker, increased the amplitude of oscillatory currents by >70% but reduced their frequency by ∼17%. The TEA effects did not appear to result from direct actions on starburst cells, but rather a modulation of their synaptic inputs. Oscillatory currents were inhibited by 6-cyano-7-nitroquinoxalene-2,3-dione (CNQX), an antagonist of AMPA/kainate receptors, indicating that they were dependent on a periodic glutamatergic input likely from presynaptic bipolar cells. The oscillations were also inhibited by the calcium channel blockers cadmium and nifedipine, suggesting that the glutamate release was calcium dependent. Application of AP4, an agonist of mGluR6 receptors on on-center bipolar cells, blocked the oscillatory currents in starburst cells. However, application of TEA overcame the AP4 blockade, suggesting that the periodic glutamate release from bipolar cells is intrinsic to the inner plexiform layer in that, under experimental conditions, it can occur independent of photoreceptor input. The GABA receptor antagonists picrotoxin and bicuculline enhanced the amplitude of oscillations in starburst cells prestimulated with TEA. Our results suggest that this enhancement was due to a reduction of a GABAergic feedback inhibition from amacrine cells to bipolar cells and the resultant increased glutamate release. Finally, we found that some ganglion cells and other types of amacrine cell also displayed rhythmic activity, suggesting that oscillatory behavior is expressed by a number of inner retinal neurons.


1990 ◽  
Vol 421 (1) ◽  
pp. 645-662 ◽  
Author(s):  
S Suzuki ◽  
M Tachibana ◽  
A Kaneko
Keyword(s):  

2010 ◽  
Vol 30 (5) ◽  
pp. 1677-1685 ◽  
Author(s):  
P. W. Keeley ◽  
B. E. Reese
Keyword(s):  

2009 ◽  
Vol 29 (1) ◽  
pp. 106-117 ◽  
Author(s):  
H. Wassle ◽  
C. Puller ◽  
F. Muller ◽  
S. Haverkamp
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document