High-throughput characterization of mutations in genes that drive clonal evolution using multiplex adaptome capture sequencing

Cell Systems ◽  
2021 ◽  
Author(s):  
Daniel E. Deatherage ◽  
Jeffrey E. Barrick
Author(s):  
Alfred Ludwig ◽  
Mona Nowak ◽  
Swati Kumari ◽  
Helge S. Stein ◽  
Ramona Gutkowski ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yiming Chen ◽  
Chi Chen ◽  
Chen Zheng ◽  
Shyam Dwaraknath ◽  
Matthew K. Horton ◽  
...  

AbstractThe L-edge X-ray Absorption Near Edge Structure (XANES) is widely used in the characterization of transition metal compounds. Here, we report the development of a database of computed L-edge XANES using the multiple scattering theory-based FEFF9 code. The initial release of the database contains more than 140,000 L-edge spectra for more than 22,000 structures generated using a high-throughput computational workflow. The data is disseminated through the Materials Project and addresses a critical need for L-edge XANES spectra among the research community.


2021 ◽  
Vol 52 (4) ◽  
pp. 1159-1168
Author(s):  
Lei Zhao ◽  
Yuanxun Zhou ◽  
Hui Wang ◽  
Xuebin Chen ◽  
Lixia Yang ◽  
...  

2019 ◽  
Vol 60 (5) ◽  
pp. 1082-1097 ◽  
Author(s):  
Panneerselvam Krishnamurthy ◽  
Yukiko Fujisawa ◽  
Yuya Takahashi ◽  
Hanako Abe ◽  
Kentaro Yamane ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Komal Jain ◽  
Teresa Tagliafierro ◽  
Adriana Marques ◽  
Santiago Sanchez-Vicente ◽  
Alper Gokden ◽  
...  

AbstractInadequate sensitivity has been the primary limitation for implementing high-throughput sequencing for studies of tick-borne agents. Here we describe the development of TBDCapSeq, a sequencing assay that uses hybridization capture probes that cover the complete genomes of the eleven most common tick-borne agents found in the United States. The probes are used for solution-based capture and enrichment of pathogen nucleic acid followed by high-throughput sequencing. We evaluated the performance of TBDCapSeq to surveil samples that included human whole blood, mouse tissues, and field-collected ticks. For Borrelia burgdorferi and Babesia microti, the sensitivity of TBDCapSeq was comparable and occasionally exceeded the performance of agent-specific quantitative PCR and resulted in 25 to > 10,000-fold increase in pathogen reads when compared to standard unbiased sequencing. TBDCapSeq also enabled genome analyses directly within vertebrate and tick hosts. The implementation of TBDCapSeq could have major impact in studies of tick-borne pathogens by improving detection and facilitating genomic research that was previously unachievable with standard sequencing approaches.


2015 ◽  
Vol 87 (9) ◽  
pp. 4667-4674 ◽  
Author(s):  
Daniel W. Woodall ◽  
Beixi Wang ◽  
Ellen D. Inutan ◽  
Srinivas B. Narayan ◽  
Sarah Trimpin

PLoS ONE ◽  
2018 ◽  
Vol 13 (5) ◽  
pp. e0196942 ◽  
Author(s):  
Debashis Dutta ◽  
Samuel Johnson ◽  
Alisha Dalal ◽  
Martin J. Deymier ◽  
Eric Hunter ◽  
...  

2013 ◽  
Vol 5 (1) ◽  
pp. 21-25 ◽  
Author(s):  
Yue-Jian Hu ◽  
Qian Wang ◽  
Yun-Tao Jiang ◽  
Rui Ma ◽  
Wen-Wei Xia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document