Experimental measurement of drop-size and estimation of specific interfacial area in a helical microbore tube based micromixer-settler with 30% TBP/nitric acid system

Author(s):  
Shekhar Kumar ◽  
D. Sivakumar ◽  
Bijendra Kumar ◽  
U. Kamachi Mudali
Author(s):  
Jennifer Niessner ◽  
S. Majid Hassanizadeh ◽  
Dustin Crandall

We present a new numerical model for macro-scale two-phase flow in porous media which is based on a physically consistent theory of multi-phase flow. The standard approach for modeling the flow of two fluid phases in a porous medium consists of a continuity equation for each phase, an extended form of Darcy’s law as well as constitutive relationships for relative permeability and capillary pressure. This approach is known to have a number of important shortcomings and, in particular, it does not account for the presence and role of fluid–fluid interfaces. An alternative is to use an extended model which is founded on thermodynamic principles and is physically consistent. In addition to the standard equations, the model uses a balance equation for specific interfacial area. The constitutive relationship for capillary pressure involves not only saturation, but also specific interfacial area. We show how parameters can be obtained for the alternative model using experimental data from a new kind of flow cell and present results of a numerical modeling study.


2014 ◽  
Vol 32 (3) ◽  
pp. 281-300 ◽  
Author(s):  
Nirvik Sen ◽  
Mayur Darekar ◽  
K. K. Singh ◽  
S. Mukhopadhyay ◽  
K. T. Shenoy ◽  
...  

2004 ◽  
Vol 37 (6) ◽  
pp. 1007-1009 ◽  
Author(s):  
Yonghua Li ◽  
Fanling Meng ◽  
Jinkuan Wang ◽  
Yuming Wang

Small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) have been used to investigate sputter-deposited TiNi films annealed at 773 K for 3, 8, 13, 15, 25 and 60 min. The specific interfacial area of the crystalline–amorphous two-phase system increases at the beginning of annealing, achieves a maximum after about 13 min and decreases on further annealing, whereas the radius of gyration of the crystalline particle increases during the annealing process. The prominent increase of the specific interfacial area and the slight increase of the radius of gyration of the crystalline particle at the beginning of annealing are correlated with the nucleation of the crystalline particle. The subsequent decrease of the specific interfacial area is correlated with the growth of the crystalline particles.


Bubble sizes in bubble column affect the bubble induced mixing of phases, interfacial area and transfer processes. Acoustic technique is used to measure bubble size distribution in a rectangular bubble column of cross section 0.2m x 0.02m for air sparged into water and aqueous solutions of ethylene glycol. Five condenser mikes at intermediate distance of 0.05 m measured above the distributor plate were used to find out the variation of bubble size as the bubbles move up. Sauter-mean bubble diameter and specific interfacial area were estimated from bubble size distribution at several superficial air velocity, static bed height, distance above the distributor plate and ethylene glycol concentration. The BSD exhibited mono-modal distribution and indicated non-uniform homogeneous bubbling regime. Sauter-mean bubble diameter is independent of superficial gas velocity, static bed height and concentration of EG, although, the values were higher than that for air-water system. Sauter-mean bubble diameter decreases as the bubbles move up indicating bubble breakup to take place once the bubbles leave the sparger. The value of interfacial area increases as the static bed height decreases and distance above the distributor plate increases. For air-ethylene glycol solution the values of specific interfacial area are about 200% higher than that observed in case of air-water system. The acoustic technique may be used to measure local values of bubble sizes and specific interfacial area.


Sign in / Sign up

Export Citation Format

Share Document