Effect of in situ synthesised mullite whiskers on the high-temperature strength of Al2O3-based ceramic moulds for casting hollow turbine blades

2016 ◽  
Vol 42 (16) ◽  
pp. 18851-18858 ◽  
Author(s):  
Zhongliang Lu ◽  
Guoqiang Tian ◽  
Weijian Wan ◽  
Kai Miao ◽  
Dichen Li
Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1181
Author(s):  
Yi Chen ◽  
Zhongliang Lu ◽  
Weijian Wan ◽  
Jian Li ◽  
Kai Miao ◽  
...  

Urchin-like mullite whiskers synthesized by the vapor–liquid–solid growth method were used to improve the high-temperature performance of porous gelcast SiO2-based ceramic molds. Aluminum was used to facilitate the synthesis of polycrystal urchin-like mullite whiskers which acted as bridges between particles. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to investigate the microstructures and phase compositions of the sintered ceramic samples, respectively. Urchin-like mullite whiskers with diameters of 0.2~1.0 µm and lengths of 1.0~8.0 µm were successfully synthesized in SiO2-based ceramic. When 15 vol% Al was added, the high-temperature strength at 1200 °C was improved from 8.5 to 27.5 MPa, and the creep deformation was decreased to 0.56 mm. Meanwhile, a sintering shrinkage below 0.3% was obtained, and the de-coring rate was accelerated by 67% compared to that of the pure SiO2-based ceramic. This method showed excellent high-temperature strength and high precision, having remarkable potential in the fabrication of hollow turbine blades.


2016 ◽  
Vol 49 (4) ◽  
pp. 1253-1265 ◽  
Author(s):  
Ralph Gilles ◽  
Debashis Mukherji ◽  
Lukas Karge ◽  
Pavel Strunz ◽  
Premysl Beran ◽  
...  

Co–Re alloys are being developed for ultra-high-temperature applications to supplement Ni-based superalloys in future gas turbines. The main goal of the alloy development is to increase the maximum service temperature of the alloy beyond 1473 K,i.e.at least 100 K more than the present single-crystal Ni-based superalloy turbine blades. Co–Re alloys are strengthened by carbide phases, particularly the monocarbide of Ta. The binary TaC phase is stable at very high temperatures, much greater than the melting temperature of superalloys and Co–Re alloys. However, its stability within the Co–Re–Cr system has never been studied systematically. In this study an alloy with the composition Co–17Re–23Cr–1.2Ta–2.6C was investigated using complementary methods of small-angle neutron scattering (SANS), scanning electron microscopy, X-ray diffraction and neutron diffraction. Samples heat treated externally and samples heatedin situduring diffraction experiments exhibited stable TaC precipitates at temperatures up to 1573 K. The size and volume fraction of fine TaC precipitates (up to 100 nm) were characterized at high temperatures within situSANS measurements. Moreover, SANS was used to monitor precipitate formation during cooling from high temperatures. When the alloy is heated the matrix undergoes an allotropic phase transformation from the ∊ phase (hexagonal close-packed) to the γ phase (face-centred cubic), and the influence on the strengthening TaC precipitates was also studied within situSANS. The results show that the TaC phase is stable and at these high temperatures the precipitates coarsen but still remain. This makes the TaC precipitates attractive and the Co–Re alloys a promising candidate for high-temperature application.


2020 ◽  
Vol 23 ◽  
pp. 100944 ◽  
Author(s):  
Zhaojie Feng ◽  
Mingchao Wang ◽  
Ruoyun Lu ◽  
Wence Xu ◽  
Ting Zhang ◽  
...  

1991 ◽  
Vol 251 ◽  
Author(s):  
C.-W. Li ◽  
J. Yamanis ◽  
P.J. Whalen ◽  
C.J. Gasdaska ◽  
C.P. Ballard

ABSTRACTIn situ reinforced (ISR) silicon nitride ceramics have been developed to have microstructures that mimic the best whisker containing ceramic matrix composites. Large, interlocking needle-like grains of beta silicon nitride can be produced throughout these materials to create an isotropic, high-temperature ceramic with high fracture toughness (˜9 MPa√m), good high-temperature strength (4 Pt MOR = 750 MPa at 25°C and 500 MPa at 1375°C), high Weibull modulus (m >20), and low creep at high temperature. Since these materials do not rely on transforming metastable phase inclusions as a toughening mechanism, their fracture resistance is virtually insensitive to temperature. The high crack growth resistance of these ceramics also yields a material which is extremely defect tolerant. Residual MOR strengths of 300–400 MPa are typical after multiple 50-kg Vicker's indentations of the sample tensile surface. After abrasive particle impact, the biaxial strengths of the in situ reinforced ceramics are typically more than twice that of traditional, fine-grained silicon nitrides.Unlike ceramic composites toughened using whisker additives, the in situ reinforcement approach to silicon nitride development does not require the use of complicated whisker dispersion techniques for green processing, nor is shape-limiting hot pressing required for densification during sintering.


1990 ◽  
Vol 39 (442) ◽  
pp. 878-882
Author(s):  
Chengguo WANG ◽  
Shiomi KIKUCHI ◽  
Yoshitaka OKITSU ◽  
Masahiro KOIWA

Alloy Digest ◽  
1965 ◽  
Vol 14 (5) ◽  

Abstract Deloro-Stellite-7 is a cobalt base casting alloy possessing excellent corrosion resistance and high temperature strength together with good ductility and excellent resistance to thermal shock. It is recommended for gas turbine blades, brass casting dies and extrusion dies. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Co-44. Producer or source: Deloro Stellite Ltd.


Sign in / Sign up

Export Citation Format

Share Document