Microstructure evolution and isothermal oxidation properties of c-AlPO4 and SiC whisker co-modified mullite coated SiC-C/SiC composites

2019 ◽  
Vol 45 (16) ◽  
pp. 20704-20713 ◽  
Author(s):  
Dongmei Pu ◽  
Pengju Chen ◽  
Peng Xiao ◽  
Zhuan Li ◽  
Zeyan Liu ◽  
...  
2019 ◽  
Vol 71 (5) ◽  
pp. 706-711 ◽  
Author(s):  
Bingxue Cheng ◽  
Haitao Duan ◽  
Yongliang Jin ◽  
Lei Wei ◽  
Jia Dan ◽  
...  

Purpose This paper aims to investigate the thermal oxidation characteristics of the unsaturated bonds (C=C) of trimethylolpropane trioleate (TMPTO) and to reveal the high temperature oxidation decay mechanism of unsaturated esters and the nature of the anti-oxidation properties of the additives. Design/methodology/approach Using a DXR laser microscopic Raman spectrometer and Linkam FTIR600 temperature control platform, the isothermal oxidation experiments of TMPTO with or without 1.0 wt. % of different antioxidants were performed. Findings The results indicated that the Raman peaks of =C-H, C=C and -CH2- weaken gradually with prolonged oxidation time, and the corresponding Raman intensities drop rapidly at higher temperatures. The aromatic amine antioxidant can decrease the attenuation of peak intensity, as it significantly reduces the rate constant of C=C thermal oxidation. The hindered phenolic antioxidant has a protective effect during the early stages of oxidation (induction period), but it may accelerate the oxidation of C=C afterwards. Originality/value Research on the structure changes of synthetic esters during oxidation by Raman spectroscopy will be of great importance in promoting the use of Raman spectroscopy to analyze the oxidation of lubricants.


2010 ◽  
Vol 654-656 ◽  
pp. 1952-1955 ◽  
Author(s):  
Cheng Wang ◽  
Sheng Long Zhu ◽  
Fu Hui Wang

An inorganic metal modified silicate composite coating was developed to protect the corrosion and oxidation of Ti6Al4V alloy at 650°C. The properties of the coatings were investigated by oxidation and corrosion experiments, and the microstructure of the coatings was studied by SEM. The isothermal oxidation results indicated that the Ti6Al4V alloy suffered serious oxidation after exposed for 100h at 650°C and the mass of the alloy gained almost lineally, while the coated alloy had almost no mass gain and the coatings keep intact after oxidation. The salt spray test for 20h and oxidation at 650°C for 2h was carried out to investigate the corrosion and oxidation properties of the coatings. The results indicated that the alloy experienced serious corrosion after experiment for 20 cycles, while the coated alloy did not corrode after the experiments. The thermal shock experiments indicated that the coatings could withstand 50 times thermal shock when kept for 5min at 700°C and then immediately put into 3.5%NaCl solution at room temperature.


2010 ◽  
Vol 434-435 ◽  
pp. 116-119 ◽  
Author(s):  
Bin Li ◽  
Zong De Liu ◽  
Li Ping Zhao ◽  
Yan Rong Bao

The key problem about the application of TiC/Fe composite ceramics in high temperature is the oxidation resistance. With an aim to investigate oxidation properties, the high density TiC/Fe ceramics was produced by self-propagating high-temperature synthesis method combined with pseudo hot iso-static pressing (SHS/PHIP). The oxidation kinetics of TiC/Fe ceramics were investigated by means of conducting the isothermal oxidation experiments in air at temperature of 550°C  900°C for up to 150 hours, and measuring the variations of the weight gains of the composites with the oxidation times. The microstructure evolution of the composites during the oxidation processing was studied by using SEM/EDS and XRD. Experimental results show that TiC/Fe ceramics basically follows a parabolic rule at high temperature. A detailed characterization of the microstructure and distribution of the phases within the scale following oxidation studies has been undertaken to suggest the possible mechanism for the oxidation of TiC/Fe ceramics.


Sign in / Sign up

Export Citation Format

Share Document