sic particle
Recently Published Documents


TOTAL DOCUMENTS

530
(FIVE YEARS 70)

H-INDEX

44
(FIVE YEARS 4)

Author(s):  
Monica Ferraris ◽  
Flavia Gili ◽  
Xabier Lizarralde ◽  
Amaya Igartua ◽  
Gemma Mendoza ◽  
...  

2021 ◽  
Vol 13 (21) ◽  
pp. 11846
Author(s):  
Min Zhao ◽  
Qin Chen ◽  
Michael Johnson ◽  
Abhishek Kumar Awasthi ◽  
Qing Huang ◽  
...  

The paper describes one promising method and approach for the recycling, reuse, and co-resource treatment of waste photovoltaic silicon and lithium battery anode graphite. Specifically, this work considers the preparation of nano/micron silicon carbide (SiC) from waste resources. Using activated carbon as a microwave susceptor over a very short timeframe, this research paper shows that nano/micron β-SiC can be successfully synthesized using microwave sintering technology. The used sintering temperature is significantly faster and more energy-efficient than traditional processes. The research results show that the β-SiC particle growth morphology greatly affected by the microwave sintering time. In a short microwave sintering time, the morphology of the β-SiC product is in the form of nano/micron clusters. The clusters tended to be regenerated into β-SiC nanorods after appropriately extending the microwave sintering time. In the context of heat conversion and resource saving, the comprehensive CO2 emission reduction is significantly higher than that of the traditional SiC production method.


2021 ◽  
Author(s):  
Shakir Gatea ◽  
Thana Abdel Salam Tawfiq ◽  
Hengan Ou

Abstract Metal matrix composites (MMCs) have a high strength-to-weight ratio, high stiffness, and good damage resistance under a wide range of operating conditions, making them a viable alternative to traditional materials in a variety of technical applications. Because of their high strength, composite materials are hard to deform to a significant depth at room temperature. As a result, additional treatments are required to enhance the composite's room ductility prior to deformation. In this investigation, as-received 6092Al/SiCp composite sheets (T6-condition) are heat treated to O-condition annealing to enhance its ductility in order to assess the influence of single point incremental forming (SPIF) parameters on the formability and fracture behavior of the Al/SiC particle composite sheets at room temperature. Then the annealed sheets are heat treated to T6-condition to enhance the strength and achieve properties equivalent to as-received sheets properties. The results demonstrate that the Al/SiC particle composite sheets with T6 treatment could not be deformed to the specified depth at room temperature due to low room ductility and that further treatment, such as O-condition annealing, is required to enhance the room ductility. When annealed Al/SiCp composite sheets are heat treated to T6, the sheets exhibit properties comparable to the as-received sheets. Al/SiC particle composite sheets with low SPIF parameters may have greater formability and fracture depth with low strain hardening curve.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1166
Author(s):  
Li Yang ◽  
Zuli Mao

Carbon/carbon composites, when used as bone implant materials, do not adhere well to the bone tissues because of their non-bioactive characteristics. Therefore, we electro-deposited SiC-hydroxyapatite coatings (with an ultrasound-assisted step) on carbon/carbon composites. We analyzed how the content and size of the SiC particles affected the structure, morphology, bonding strength and dissolution of the SiC-hydroxyapatite coatings. The hydroxyapatite coating dissolution properties were assessed by the released Ca2+ and the weight loss. The SiC-hydroxyapatite coating on naked carbon/carbon composites showed a more compact microstructure in comparison to the hydroxyapatite coating on carbon/carbon composites. The reasons for the changes in the microstructure and the improvement in the adhesion of the coatings on C/C were discussed. Moreover, the addition of SiC particles increased the binding strengths of the hydroxyapatite coating on C/C composite, as well as reduced the dissolution rate of the hydroxyapatite coating.


2021 ◽  
Vol 19 (4) ◽  
pp. 345-363
Author(s):  
Afshin Nafari ◽  
Hamidreza Ghandvar ◽  
Kh. a. Nekouee

In the present study, the influences of different SiC addition, MWCNTs and various SiC particle sizes on the structural, mechanical and tribological properties of ZC71 alloys were studied. The results revealed that the proper amount/size of SiC particles with the addition of MWCNTs had a considerable effect on the microstructural alteration, and mechanical and tribological properties of the ZC71 alloy. The Vickers hardness values of the ZC71 alloy improved with the addition of MWCNT and SiC. The UTS (216 MPa) and El.% (6.95 %) were achieved in the ZC71-5%SiC(15µm)-0.5%MWCNT. The cast ZC71 alloy showed brittle fracture with some quasi-cleavage characterizations. However, by adding 5% SiC(15 µm) and 0.5% MWCNT, the fracture mode changed to ductile fracture. The wear results showed that the ZC71-5%SiC-0.5%MWCNT hybrid composite had the highest wear resistance with the lowest friction coefficient and wear rate. Examination on the worn surface of the ZC71-5%SiC-0.5%MWCNT hybrid composite showed mild abrasion as the governing wear mechanism.%2


Sign in / Sign up

Export Citation Format

Share Document