Fiber reinforced scalelike MoSi2-borosilicate glass coating with improved contact damage resistance and thermal shock resistance

Author(s):  
Mengyu Jiao ◽  
Jingyu Wu ◽  
Linlin Guo ◽  
Pengda Han ◽  
Haiyan Du ◽  
...  
1994 ◽  
Vol 344 ◽  
Author(s):  
Jeffrey A. Chambers

AbstractAdvanced ceramic materials offer significant thermodynamic efficiency advantages over metals and alloys because of their higher use temperatures. Using ceramic components results in higher temperature industrial processes which convert fuels to energy more efficiently, reducing environmental emissions. Ceramics have always offered high temperature strength and superior corrosion and erosion resistance. However, brittleness, poor thermal shock resistance and catastrophic failure have slowed industrial adoptions of ceramics in environmental applications.This paper will focus on environmental applications of three new advanced ceramic materials that are overcoming these barriers to industrial utilization through improved toughness, reliability, and thermal shock performance. PRD-66, a layered oxide ceramic with outstanding thermal shock resistance and high use temperature with utility in catalyst support, insulation, and hot gas filtration applications, is discussed. Tough silicon carbide fiber reinforced silicon carbide (SiC/SiC) and carbon fiber reinforced silicon carbide (C/SiC) ceramic composites made by chemical vapor infiltration, and silicon carbide particulate reinforced alumina (SiCp/A12O3) composites made through Lanxide Corporation's DIMOX™ directed metal oxidation process are described. Applications of these materials to pollution reduction and energy efficiency in medical and municipal waste incineration, heat management, aluminum remelting, pyrolysis, coal combustion and gasification, catalytic pollution control, and hot gas filtration, will be discussed.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 788
Author(s):  
Matthias Kahr ◽  
Matthias Domke ◽  
Harald Steiner ◽  
Wilfried Hortschitz ◽  
Michael Stifter

This paper reports on a novel, miniaturized magnetomechanical transducer/sensor made of borosilicate glass with wide dynamic range. The prototype is manufactured with laser micromachining and ablation techniques. Compared to state of the art, borosilicate glass substrate offers the highest thermal shock resistance and is best suited for MEMS magnetometers, for aerospace and space applications or magnetic monitoring systems for diagnostics and plasma stability control of nuclear fusion experiments, where thermal shock resistance is a critical requirement.


Sign in / Sign up

Export Citation Format

Share Document