Structural toughness and interfacial effects of multilayer TiN erosion-resistant coatings based on high strain rate repeated impact loads

Author(s):  
Jiao Chen ◽  
Guangyu He ◽  
Yutao Han ◽  
Zhanwei Yuan ◽  
Zhe Li ◽  
...  
2019 ◽  
Vol 10 (1) ◽  
pp. 99-120
Author(s):  
Jarosław MARCISZ ◽  
Bogdan GARBARZ ◽  
Jacek JANISZEWSKI

The paper contains results of investigation of nanostructured bainitic steel subjected to repeated high-strain-rate deformations using split Hopkinson pressure bar method and uniaxial compression of cylindrical specimens in Gleeble simulator. Steel of chemical composition Fe-0.58%C-1.80%Si-1.95%Mn-1.3Cr-0.7Mo (weight %), after isothermal heat treatment at 210°C, is characterized by following mechanical properties determined at static tensile test: yield strength YS0.2 = 1.3 GPa; ultimate tensile strength UTS = 2.05 GPa; total elongation E = 12%, hardness 610 HV and Charpy-V impact toughness 24 J at +20℃ and 14 J at -40℃. Stress-strain curves obtained for pre-stressed material before the next dynamic compression and after repeated compressions were analysed. Microstructure of the deformed specimens in areas of the dynamic impact was investigated. The effects of the dynamic repeated impact on changes in characteristics of the investigated material, in that on strain hardening mechanism, were established. Critical strains of 5.3% at strain rate 910 s-1 and about 10% at strain rate 50 s-1 for the nanostructured bainite were determined. Exceeding the critical strain under uniaxial repeated high-strain-rate compression, resulted in decreasing of ability of the steel for further plastic deformation and strain hardening.


1985 ◽  
Vol 46 (C5) ◽  
pp. C5-511-C5-516
Author(s):  
A. Kobayashi ◽  
S. Hashimoto ◽  
Li-lih Wang ◽  
M. Toba

1988 ◽  
Vol 49 (C3) ◽  
pp. C3-145-C3-149 ◽  
Author(s):  
N. A. FLECK ◽  
S. C. WRIGHT ◽  
J. H. LIU ◽  
W. J. STRONGE

2021 ◽  
Author(s):  
Mark Pankow ◽  
Joseph Giliberto ◽  
Brandon Hearley ◽  
Brian Justusson ◽  
Joseph Schaefer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document