Relationship between the adhesion properties of UV-curable alumina suspensions and the functionalities and structures of UV-curable acrylate monomers for DLP-based ceramic stereolithography

Author(s):  
Xiaohong Xu ◽  
Shixiang Zhou ◽  
Jianfeng Wu ◽  
Yang Liu ◽  
Yuying Wang ◽  
...  
2014 ◽  
Vol 43 (4) ◽  
pp. 177-184 ◽  
Author(s):  
Pooneh Kardar ◽  
Morteza Ebrahimi ◽  
Saeed Bastani

Purpose – The purpose of this work was to study the effect of chemical structure of reactive diluents on the curing behaviour and physical–mechanical properties of a titanium dioxide pigmented UV-curable epoxy acrylate system. Design/methodology/approach – Two different tri-functional and two different tetra-functional acrylate monomers were used as reactive diluents in the formulations. The curing behaviour of the formulations was studied by using photo-differential scanning calorimetry analysis. The rate of curing, conversion at the maximum rate and ultimate conversion for different formulations were calculated. In addition, the physical and mechanical characteristics of the cured films, including glass transition temperature and modulus, were measured by using a dynamic mechanical analysis technique. Findings – The results showed that the ultimate conversion for non-pigmented pentaerythritol triacrylate (PETA) and trimethylol propane triacrylate (TMPTA) formulations were almost similar, but the interference effect of titanium dioxide particles on the curing of the PETA formulations was found to be more considerable in comparison to the TMPTA formulations. The extent of reaction for tetra-functional acrylate monomers was considerably less than those for tri-functional acrylate monomers. The Tg and storage modulus of non-pigmented PETA, TMPTA and pentaerythritol tetraacrylate (PE4TA) formulations were almost the same and higher than that for ditrimethylol propane tetraacrylate (DiTMP4TA) formulations. However, Tg and storage modulus of pigmented tetra-functional acrylate monomer formulations were higher than those for tri-acrylate monomer formulations. Research limitations/implications – The curing conditions (temperature and UV intensity) can affect the network formation and consequently will affect on the properties of the cured films. Practical implications – The pigmented UV-curable coatings are interested for many industries such as wood and automotive industries. The reported data can be used by the formulators working in the R&D departments. In addition, the results obtained can be used by the researchers who are active in the field of structure–property relationship for UV-curable coatings. Social implications – UV-curing systems are considered as one of the most environment-friendly coatings system. Therefore, the developing of its knowledge can help to extend its usage to different applications. Originality/value – The photopolymerisation of pigmented coatings is a great challenge and is hardly investigated in the literature. Therefore, in this research, the effect of chemical structure and functionality of different multifunctional acrylate monomers on the curing behaviour of pigmented formulations was investigated.


2011 ◽  
Vol 87 (7-8) ◽  
pp. 732-743
Author(s):  
Kwang-Seop Kim ◽  
Sun-A Song ◽  
Dae-Geun Choi ◽  
Jun-Ho Jeong ◽  
Jae-Hyun Kim ◽  
...  

2014 ◽  
Vol 43 (2) ◽  
pp. 61-68 ◽  
Author(s):  
Ghodsieh Mashouf ◽  
Morteza Ebrahimi ◽  
Saeed Bastani

Purpose – The purpose of this work was to perform a systematic study on the effect of formulation on the physical and mechanical properties of ultaviolet (UV) curable urethane acrylate resins. In addition, the authors wanted to derive mathematical formula for the prediction of physical and mechanical properties for the aforementioned system. Design/methodology/approach – The experiments were carried out based on mixture experimental design to determine the effect of different multifunctional acrylates (i.e. 1,6-hexanediol diacrylate (HDDA), tripropylene glycol diacrylate (TPGDA), trimethyolpropane triactylate (TMPTA)) concentration on the physical and mechanical properties of a UV curable polyurethane acrylate system. The urethane oligomer was synthesized and characterized by the research team. Microhardness, adhesion strength and scratch resistance of the cured films were evaluated as the physical and mechanical properties. Findings – The results revealed that the resin and TMPTA concentrations had the most significant effects on the microhardness property. Adhesion strength of the films showed a linear trend with respect to all variables. Moreover, all components also had a significant and complex influence on the scratch resistance of the cured systems. In addition, mathematical equations proposed by mixture experimental design were derived for all the mentioned properties. Research limitations/implications – Other multifunctional acrylate monomers (i.e. more than three functional) can be used in the formulations. The kinetics of the curing can affect on the network formation and consequently on the properties of the cured films. Practical implications – The obtained results can be used by the researchers who are active in the field of structure-property relationship of polymers and surface coatings. The reported data and the mathematical equations can also be used for the formulating of an appropriate formulation based on a specific application. Originality/value – A systematic and statistical-based approach, i.e. mixture experimental design, was used to evaluate the effect of formulation on some of the properties of a UV curable polyurethane acrylate system. A urethane oligomer and three different multifunctional acrylate monomers as reactive diluents were used in the formulations. Noteworthy to mention that several mathematical models were derived by using analysis of variance for the prediction of the properties studied in this system.


2018 ◽  
Vol 121 ◽  
pp. 236-246 ◽  
Author(s):  
Chengguo Liu ◽  
Cuina Wang ◽  
Yun Hu ◽  
Fei Zhang ◽  
Qianqian Shang ◽  
...  

2007 ◽  
Vol 26-28 ◽  
pp. 1113-1116 ◽  
Author(s):  
Hee Jung Lee ◽  
Seung Min Hyun ◽  
Hak Joo Lee ◽  
Dae Geun Choi ◽  
Dong Il Lee ◽  
...  

The reliable reproducibility of nano patterns or other nano structures is one of many issues in the nano-imprint lithography process. An important prerequisite for reproducibility is suitable adhesion properties of adhesion promoters or anti-sticking layer. In this study, rhombus shaped symmetrical probe with a flat tip was developed and fabricated using MEMS fabrication technique. For the experimental setup of the adhesion test using a UV curable PAK01 resin coated AFM tip with several adhesion promoters, the flat tip is covered by PAK01 resist using micromanipulator. Anti-sticking layers of silane agents were prepared on the tip by vapor deposition method. Adhesion force between various adhesion promoters (GPTS, APMDS, APTS, DUV30J, O2 planairzation) and PAK01 resist and the force between anti-sticking layer (FOTS, DDMS) and PAK01 resist were evaluated using the force-distance mode of AFM. Adhesion force of GPTS and FOTS are about 7180 nN and 1660 nN, respectively.


2020 ◽  
Vol 137 (44) ◽  
pp. 49356
Author(s):  
Yuquan Zhao ◽  
Xingyu Tao ◽  
Xinyi Li ◽  
Tao Zhang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document