afm probe
Recently Published Documents


TOTAL DOCUMENTS

286
(FIVE YEARS 33)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
pp. 1115-1126
Author(s):  
Gheorghe Stan ◽  
Pradeep Namboodiri

The open-loop (OL) variant of Kelvin probe force microscopy (KPFM) provides access to the voltage response of the electrostatic interaction between a conductive atomic force microscopy (AFM) probe and the investigated sample. The measured response can be analyzed a posteriori, modeled, and interpreted to include various contributions from the probe geometry and imaged features of the sample. In contrast to this, the currently implemented closed-loop (CL) variants of KPFM, either amplitude-modulation (AM) or frequency-modulation (FM), solely report on their final product in terms of the tip–sample contact potential difference. In ambient atmosphere, both CL AM-KPFM and CL FM-KPFM work at their best during the lift part of a two-pass scanning mode to avoid the direct contact with the surface of the sample. In this work, a new OL AM-KPFM mode was implemented in the single-pass scan of the PeakForce Tapping (PFT) mode. The topographical and electrical components were combined in a single pass by applying the electrical modulation only in between the PFT tip–sample contacts, when the AFM probe separates from the sample. In this way, any contact and tunneling discharges are avoided and, yet, the location of the measured electrical tip–sample interaction is directly affixed to the topography rendered by the mechanical PFT modulation at each tap. Furthermore, because the detailed response of the cantilever to the bias stimulation was recorded, it was possible to analyze and separate an average contribution of the cantilever to the determined local contact potential difference between the AFM probe and the imaged sample. The removal of this unwanted contribution greatly improved the accuracy of the AM-KPFM measurements to the level of the FM-KPFM counterpart.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Karen Dunker ◽  
Sol Gomez de la Torre Canny ◽  
Catherine Taylor Nordgård ◽  
Etienne Dague ◽  
Cécile Formosa-Dague ◽  
...  

Abstract Background Fish skin represents an ancient vertebrate mucosal surface, sharing characteristics with other mucosal surfaces including those of the intestine. The skin mucosa is continuously exposed to microbes in the surrounding water and is therefore important in the first line defense against environmental pathogens by preventing bacteria from accessing the underlying surfaces. Understanding the microbe-host interactions at the fish skin mucosa is highly relevant in order to understand and control infection, commensalism, colonization, persistence, infection, and disease. Here we investigate the interactions between the pathogenic bacteria Aeromonas salmonicida (A. salmonicida) and Yersinia ruckeri (Y. ruckeri), respectively, and the skin mucosal surface of Atlantic salmon fry using AFM force spectroscopy. Results The results obtained revealed that when retracting probes functionalized with bacteria from surfaces coated with immobilized mucins, isolated from salmon mucosal surfaces, rupture events reflecting the disruption of adhesive interactions were observed, with rupture strengths centered around 200 pN. However, when retracting probes functionalized with bacteria from the intact mucosal surface of salmon fish fry no adhesive interactions could be detected. Furthermore, rheological measurements revealed a near fluid-like behavior for the fish fry skin mucus. Taken together, the experimental data indicate that the adhesion between the mucin molecules within the mucous layer may be significantly weaker than the interaction between the bacteria and the mucin molecules. The bacteria, immobilized on the AFM probe, do bind to individual mucins in the mucosal layer, but are released from the near fluid mucus with little resistance upon retraction of the AFM probe, to which they are immobilized. Conclusion The data provided in the current paper reveal that A. salmonicida and Y. ruckeri do bind to the immobilized mucins. However, when retracting the bacteria from intact mucosal surfaces, no adhesive interactions are detected. These observations suggest a mechanism underlying the protective function of the mucosal surface based on the clearing of potential threats by adhering them to loosely attached mucus that is subsequently released from the fish skin.


2021 ◽  
Author(s):  
Konstantin Nikiforov ◽  
Nikolay Egorov ◽  
Ivan Sokolov ◽  
Valery Strebko ◽  
Vladimir Mikhailovskiy ◽  
...  

Author(s):  
Omar Alshehri ◽  
Majed Al-Ghamdi ◽  
Mohamed Arabi ◽  
Mahmoud Khater ◽  
Maher Bakri-Kassem ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 410
Author(s):  
Dan Liu ◽  
Xiaoming Liu ◽  
Pengyun Li ◽  
Xiaoqing Tang ◽  
Masaru Kojima ◽  
...  

In recent years, micromanipulators have provided the ability to interact with micro-objects in industrial and biomedical fields. However, traditional manipulators still encounter challenges in gaining the force feedback at the micro-scale. In this paper, we present a micronewton force-controlled two-finger microhand with a soft magnetic end-effector for stable grasping. In this system, a homemade electromagnet was used as the driving device to execute micro-objects manipulation. There were two soft end-effectors with diameters of 300 μm. One was a fixed end-effector that was only made of hydrogel, and the other one was a magnetic end-effector that contained a uniform mixture of polydimethylsiloxane (PDMS) and paramagnetic particles. The magnetic force on the soft magnetic end-effector was calibrated using an atomic force microscopy (AFM) probe. The performance tests demonstrated that the magnetically driven soft microhand had a grasping range of 0–260 μm, which allowed a clamping force with a resolution of 0.48 μN. The stable grasping capability of the magnetically driven soft microhand was validated by grasping different sized microbeads, transport under different velocities, and assembly of microbeads. The proposed system enables force-controlled manipulation, and we believe it has great potential in biological and industrial micromanipulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Shueei-Muh Lin ◽  
Ching-Yao Chang ◽  
Chihng-Tsung Liauh ◽  
Wen-Rong Wang

The conventional design of harmonic AFM probe geometry is made in neglect of the effects of the size-dependency factor and the tip-sample interacting force. Obviously, the effect of these two factors on the natural frequencies of a probe is significant. In this study, the effects of the two factors on the integer-multiples relation among frequencies are investigated. In this study, the effects of the two factors on the integer-multiples relation among frequencies are investigated. It is discovered that, in general, the integer-multiples relations of the probe’s frequencies in the classical model does not be kept as the same as that in the system with the effect of the size-dependency factor under the same material and geometry properties of probe. In addition, when the probe is used to measure the sample, the deviation of the relations will happen. The smaller the tip-sample distance is, the larger the deviation of integer-multiples frequencies is. The analytical method is presented here such that during scanning a sample at some tip-sample distance, the material and geometry properties of the probe can be tuned to the integer-multiples relation of resonant frequencies. Moreover, five similarity conditions among the systems with and without the effects of size-dependency and the tip-sample interacting force are discovered. According to these conditions, the integer-multiples relation is kept in different systems.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sotaro Fuchigami ◽  
Toru Niina ◽  
Shoji Takada

The atomic force microscopy (AFM) is a powerful tool for imaging structures of molecules bound on surfaces. To gain high-resolution structural information, one often superimposes structure models on the measured images. Motivated by high flexibility of biomolecules, we previously developed a flexible-fitting molecular dynamics (MD) method that allows protein structural changes upon superimposing. Since the AFM image largely depends on the AFM probe tip geometry, the fitting process requires accurate estimation of the parameters related to the tip geometry. Here, we performed a Bayesian statistical inference to estimate a tip radius of the AFM probe from a given AFM image via flexible-fitting molecular dynamics (MD) simulations. We first sampled conformations of the nucleosome that fit well the reference AFM image by the flexible-fitting with various tip radii. We then estimated an optimal tip parameter by maximizing the conditional probability density of the AFM image produced from the fitted structure.


2021 ◽  
Vol 118 ◽  
pp. 110277
Author(s):  
Weihao Sun ◽  
Jianli Ma ◽  
Chao Wang ◽  
Heng Li ◽  
Chengwei Wu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yijun Yang ◽  
Kwanlae Kim

AbstractAtomic force microscopy (AFM) is central to investigating the piezoelectric potentials of one-dimensional nanomaterials. The AFM probe is used to deflect individual piezoelectric nanorods and to measure the resultant current. However, the torsion data of AFM probes have not been exploited to elucidate the relationship between the applied mechanical force and resultant current. In this study, the effect of the size of ZnO nanorods on the efficiency of conversion of the applied mechanical force into current was investigated by simultaneously acquiring the conductive AFM and lateral force microscopy signals. The conversion efficiency was calculated based on linear regression analysis of the scatter plot of the data. This method is suitable for determining the conversion efficiencies of all types of freestanding piezoelectric nanomaterials grown under different conditions. A pixel-wise comparison of the current and lateral force images elucidated the mechanism of current generation from dense arrays of ZnO nanorods. The current signals generated from the ZnO nanorods by the AFM probe originated from the piezoelectric and triboelectric effects. The current signals contributed by the triboelectric effect were alleviated by using an AFM probe with a smaller spring constant and reducing the normal force.


Author(s):  
Д.А. Антонов ◽  
А.С. Новиков ◽  
Д.О. Филатов ◽  
А.В. Круглов ◽  
И.Н. Антонов ◽  
...  

In thin ZrO2 (Y) / Ni films, with used of an atomic force microscope (AFM) probe, conductive ferromagnetic filaments of nanometer sizes, consisting of Ni atoms, are formed. Memristor structures based on such films, the upper electrode of which was the AFM probe, demonstrated bipolar-type resistive switching (RP) associated with the destruction and reduction of Ni filaments. The area where the conducting filament emerges on the surface of the ZrO2 (Y) film manifested itself in the magnetic force image as a single-domain ferromagnetic particle.


Sign in / Sign up

Export Citation Format

Share Document