scholarly journals Lattice Boltzmann simulation of flow and heat transfer evolution inside encapsulated phase change materials due to natural convection melting

2018 ◽  
Vol 189 ◽  
pp. 154-164 ◽  
Author(s):  
Qi Lin ◽  
Shugang Wang ◽  
Zhenjun Ma ◽  
Jihong Wang ◽  
Tengfei Zhang
2011 ◽  
Vol 322 ◽  
pp. 61-67 ◽  
Author(s):  
Jiu Gu Shao ◽  
Yang Liu ◽  
You Sheng Xu

The problem of the natural convection heat transfer for phase-change in a square filled with heterogeneously porous medium is solved by lattice Boltzmann method. The lattice Boltzmann equation is governed by the heat conduction equation combined with enthalpy formation. The velocity of liquid part is fully coupled with the temperature distribution through relaxation time. It is found that the high Ra number has significantly impact on the heat transfer and convection, but the low Ra number has little influence on the natural convection. The porosity of the middle porous medium is nothing to do with the heat transfer and convection. The result is of great importance to engineering interest and also provides a new solution to phase transition.


Computation ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 65
Author(s):  
Aditya Dewanto Hartono ◽  
Kyuro Sasaki ◽  
Yuichi Sugai ◽  
Ronald Nguele

The present work highlights the capacity of disparate lattice Boltzmann strategies in simulating natural convection and heat transfer phenomena during the unsteady period of the flow. Within the framework of Bhatnagar-Gross-Krook collision operator, diverse lattice Boltzmann schemes emerged from two different embodiments of discrete Boltzmann expression and three distinct forcing models. Subsequently, computational performance of disparate lattice Boltzmann strategies was tested upon two different thermo-hydrodynamics configurations, namely the natural convection in a differentially-heated cavity and the Rayleigh-Bènard convection. For the purposes of exhibition and validation, the steady-state conditions of both physical systems were compared with the established numerical results from the classical computational techniques. Excellent agreements were observed for both thermo-hydrodynamics cases. Numerical results of both physical systems demonstrate the existence of considerable discrepancy in the computational characteristics of different lattice Boltzmann strategies during the unsteady period of the simulation. The corresponding disparity diminished gradually as the simulation proceeded towards a steady-state condition, where the computational profiles became almost equivalent. Variation in the discrete lattice Boltzmann expressions was identified as the primary factor that engenders the prevailed heterogeneity in the computational behaviour. Meanwhile, the contribution of distinct forcing models to the emergence of such diversity was found to be inconsequential. The findings of the present study contribute to the ventures to alleviate contemporary issues regarding proper selection of lattice Boltzmann schemes in modelling fluid flow and heat transfer phenomena.


Author(s):  
Yasmin Khakpour ◽  
Jamal Seyed-Yagoobi

This numerical study investigates the effect of using a blend of micro-encapsulated phase change materials (MEPCMs) on the heat transfer characteristics of a liquid in a rectangular enclosure driven by natural convection. A comparison has been made between the cases of using single component MEPCM slurry and a blend of two-component MEPCM slurry. The natural convection is generated by the temperature difference between two vertical walls of the enclosure maintained at constant temperatures. Each of the two phase change materials store latent heat at a specific range of temperatures. During phase change of the PCM, the effective density of the slurry varies. This results in thermal expansion and hence a buoyancy driven flow. The effects of MEPCM concentration in the slurry and changes in the operating conditions such as the wall temperatures compared to that of pure water have been studied. The MEPCM latent heat and the increased volumetric thermal expansion coefficient during phase change of the MEPCM play a major role in this heat transfer augmentation.


2018 ◽  
Vol 339 ◽  
pp. 974-984 ◽  
Author(s):  
Alireza Rahimi ◽  
Aravindhan Surendar ◽  
Abbas Kasaeipoor ◽  
Payam Hooshmand ◽  
Emad Hasani Malekshah

Sign in / Sign up

Export Citation Format

Share Document