Natural Convection in an Enclosure With Blend of Micro Encapsulated Phase Change Materials

Author(s):  
Yasmin Khakpour ◽  
Jamal Seyed-Yagoobi

This numerical study investigates the effect of using a blend of micro-encapsulated phase change materials (MEPCMs) on the heat transfer characteristics of a liquid in a rectangular enclosure driven by natural convection. A comparison has been made between the cases of using single component MEPCM slurry and a blend of two-component MEPCM slurry. The natural convection is generated by the temperature difference between two vertical walls of the enclosure maintained at constant temperatures. Each of the two phase change materials store latent heat at a specific range of temperatures. During phase change of the PCM, the effective density of the slurry varies. This results in thermal expansion and hence a buoyancy driven flow. The effects of MEPCM concentration in the slurry and changes in the operating conditions such as the wall temperatures compared to that of pure water have been studied. The MEPCM latent heat and the increased volumetric thermal expansion coefficient during phase change of the MEPCM play a major role in this heat transfer augmentation.

Author(s):  
Yasmin Khakpour ◽  
Jamal Seyed-Yagoobi

This paper numerically investigates the flow and heat transfer characteristics of a slurry of micro encapsulated phase change materials (MEPCM) and R134a in the presence of film evaporation. The numerical domain is comprised of a minichannel in contact with a finite thickness solid zone with constant wall temperature. During the evaporation process, the concentration of MEPCM in the slurry increases, resulting in a continuous variation of effective thermal properties of the slurry. The effect of PCM concentration on the evolution of the liquid film thickness under different operating conditions along with the variation of the local heat transfer coefficients has been studied. A user defined function has been developed to incorporate the evaporation process by introducing the mass and energy source terms for the evaporation process as well as the variation of the MEPCM concentration along the channel.


2021 ◽  
Author(s):  
Yousef Kanani ◽  
Avijit Karmakar ◽  
Sumanta Acharya

Abstract We numerically investigate the melting and solidi?cation behavior of phase change materials encapsulated in a small-radii cylinder subjected to a cyclic convective boundary condition (square wave). Initially, we explore the effect of the Stefan and Biot numbers on the non-dimensionalized time required (i.e. reference Fourier number Tref ) for a PCM initially held at Tcold to melt and reach the cross?ow temperature Thot. The increase in either Stefan or Biot number decreases Tref and can be predicted accurately using a correlation developed in this work. The variations of the PCM melt fraction, surface temperature, and heat transfer rate as a function of Fourier number are reported and analyzed for the above process. We further study the effect of the cyclic Fourier number on the periodic melting and freezing process. The melting or freezing front initiates at the outer periphery of the PCM and propagates towards the center. At higher frequencies, multiple two-phase interfaces are generated (propagating inward), and higher overall heat transfer is achieved as the surface temperature oscillates in the vicinity of the melting temperature, which increases the effective temperature difference driving the convective heat transfer.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
S. Arunachalam

Energy storage helps in waste management, environmental protection, saving of fossil fuels, cost effectiveness, and sustainable growth. Phase change material (PCM) is a substance which undergoes simultaneous melting and solidification at certain temperature and pressure and can thereby absorb and release thermal energy. Phase change materials are also called thermal batteries which have the ability to store large amount of heat at fixed temperature. Effective integration of the latent heat thermal energy storage system with solar thermal collectors depends on heat storage materials and heat exchangers. The practical limitation of the latent heat thermal energy system for successful implementation in various applications is mainly from its low thermal conductivity. Low thermal conductivity leads to low heat transfer coefficient, and thereby, the phase change process is prolonged which signifies the requirement of heat transfer enhancement techniques. Typically, for salt hydrates and organic PCMs, the thermal conductivity range varies between 0.4–0.7 W/m K and 0.15–0.3 W/m K which increases the thermal resistance within phase change materials during operation, seriously affecting efficiency and thermal response. This paper reviews the different geometry of commercial heat exchangers that can be used to address the problem of low thermal conductivity, like use of fins, additives with high thermal conductivity materials like metal strips, microencapsulated PCM, composite PCM, porous metals, porous metal foam matrix, carbon nanofibers and nanotubes, etc. Finally, different solar thermal applications and potential PCMs for low-temperature thermal energy storage were also discussed.


Author(s):  
Chang Liu ◽  
Robynne E. Murray ◽  
Dominic Groulx

Phase change materials (PCMs) inside latent heat energy storage systems (LHESS) can be used to store large amounts of thermal energy in relatively small volumes. However, such systems are complicated to design from a heat transfer point of view since the low thermal conductivity of PCMs makes charging and discharging those systems challenging on a usable time scale. Results of experiments performed on both a vertical and a horizontal cylindrical LHESS, during charging, discharging and simultaneous charging/discharging, are presented in this paper. Both LHESS are made of acrylic plastic, the horizontal LHESS has one 1/2″ copper pipe passing through its center. The vertical LHESS has two 1/2″ copper pipes, one through which hot water flows, and the other through which cold water flows. Each of the pipes has four longitudinal fins to enhance the overall rate of heat transfer to and from the PCM, therefore reducing the time required for charging and discharging. The objective of this work is to determine the phase change behavior of the PCM during the operation of the LHESS, as well as the heat transfer processes within the LHESS. Natural convection was found to play a crucial role during charging (melting) and during simultaneous charging/discharging (in the vertical LHESS). However, during discharging, the effect of natural convection was reduced in both systems.


2019 ◽  
pp. 464-464
Author(s):  
Ying Xu ◽  
Xin Nie ◽  
Zhonghua Dai ◽  
Xiao-Yan Liu ◽  
Yang Liu ◽  
...  

Accurately obtaining the temperature distribution of the medium in the shutdown pipeline of waxy crude oil has important guiding significance for making maintenance plan and restart plan.The phase transition process of waxy crude oil involves complex problems such as natural convection heat transfer, latent heat release, difficulty in tracing liquid-solid interface. In this paper, the concept and significance of breaking point were proposed. Taking the breaking point and the freezing point as dividing point, and a new zonal partition model was established based on the influence of phase change of crude oil wax crystal on heat transfer mode, with the corresponding governing equations being established for different regions. With the proposed model, the effects of natural convection on heat transfer, latent heat release, location change of condensate reservoir, heat transfer mechanism and other key issues in the process of oil phase transition were analyzed.


Author(s):  
Debayan Dasgupta ◽  
Kankan Kishore Pathak ◽  
Asis Giri

Abstract A numerical study is performed on simultaneous heat and mass transfer from a shrouded vertical nonisothermal variable height fin array, representing dehumidification process under natural convection. Fluid properties are treated as uniform, and the fluid is assigned to comply with Boussinesq approximation to include the effect of density variation with temperature and concentration. Semi-implicit method for the pressure linked equations revised (SIMPLER) algorithm is adopted to resolve pressure and velocity coupling. A detailed parametric investigation of fin spacing, variable fin height, and fin tip to shroud clearance for a range of thermal and mass Grashof number is undertaken. Results indicate that in case of smaller fin spacing, involving fin length of 0.3 m, coefficients of sensible and latent heat transfer increase with the decreasing variable height (H1*) of fin and become maximum at H1*=0.5, for all thermal and mass Grashof numbers considered presently. Further, total heat transfer analysis on a particular base length due to sensible heat shows a maximum of 24.4% enhancement, whereas same due to the latent heat shows a maximum of 25.8% enhancement, depending on the values of clearance. Induced velocities also increase with the decreasing variable height of fin (H1*), which influences the heat and mass transport. The output parameters of this analysis, like induced velocities and overall Nusselt numbers due to the sensible and latent heat, are correlated with the governing parameters. The correlation coefficients are found to be in a range from 0.97 to 0.99.


1998 ◽  
Vol 22 (3) ◽  
pp. 269-289
Author(s):  
M. Lacroix

A numerical study has been conducted for the heat transfer from a discrete heat source by natural convection in air above coupled with conduction dominated melting of a phase change material (PCM) below via a wall of finite thermal diffusivity. Results indicate that the presence of a PCM layer underneath the wall significantly delays the temperature rise of the heat source. The time delay increases as the thermal diffusivity of the wail material decreases and as the thickness of the PCM layer increases. For high thermal conductivity wall materials [Formula: see text] the steady state heat source temperatures are similar and independent of the PCM layer. On the other hand, for [Formula: see text], the steady state temperatures are higher and dependent on the thickness of the PCM layer. A correlation is proposed in terms of the thickness of the PCM layer and the thermal conductivity ratio of the wall.


Sign in / Sign up

Export Citation Format

Share Document