A modified collocation modeling framework for dynamic evolution of molecular weight distributions in general polymer kinetic systems

2021 ◽  
Vol 237 ◽  
pp. 116519
Author(s):  
Xiaowen Lin ◽  
Xi Chen ◽  
Lorenz T. Biegler ◽  
Lian-Fang Feng
2007 ◽  
Vol 60 (10) ◽  
pp. 788 ◽  
Author(s):  
Markus Busch ◽  
Marion Roth ◽  
Martina H. Stenzel ◽  
Thomas P. Davis ◽  
Christopher Barner-Kowollik

Simulations are employed to establish the feasibility of achieving controlled/living ethene polymerizations. Such simulations indicate that reversible addition–fragmentation chain transfer (RAFT) agents carrying a fluorine Z group may be suitable to establish control in high-pressure high-temperature ethene polymerizations. Based on these simulations, specific fluorine (F-RAFT) agents have been designed and tested. The initial results are promising and indicate that it may indeed be possible to achieve molecular weight distributions with a polydispersity being significantly lower than that observed in the conventional free radical process. In our initial trials presented here (using the F-RAFT agent isopropylfluorodithioformate), a correlation between the degree of polymerization and conversion can indeed be observed. Both the lowered polydispersity and the linear correlation between molecular weight and conversion indicate that control may in principle be possible.


2006 ◽  
Vol 11-12 ◽  
pp. 757-760
Author(s):  
Jun Ying Zhang ◽  
Peng Dou

Environmentally benign adhesive was synthesized by dispersion copolymerization of styrene(St) and butyl acrylate (BA) in an ethanol medium with benzoyl peroxide (BPO) as the initiator and poly(vinylpyrrolidone) as the stabilizer in the presence of acrylic acid(AA) as the functional monomer. The effect of the concentration of stabilizer, initiator and functional monomer on the conversions, molecular weights and molecular weight distributions was investigated. The results show that the conversions almost keep invariable with the increasing of stabilizer concentration, but the molecular weights increase and molecular weight distributions decrease. Conversions increase with the increasing of initiator concentration, but the molecular weights and molecular weight distributions decrease. However with the increasing of functional monomer concentration, conversions and molecular weight distributions increase but the molecular weights decrease.


Sign in / Sign up

Export Citation Format

Share Document