ultrasonic energy
Recently Published Documents


TOTAL DOCUMENTS

416
(FIVE YEARS 66)

H-INDEX

28
(FIVE YEARS 6)

Author(s):  
Masashi Iwasaki ◽  
Shunta Ishihara ◽  
Masanori Shimomura ◽  
Masayoshi Inoue

2021 ◽  
Vol 90 (10) ◽  
pp. 104401
Author(s):  
Xiaojiao Wang ◽  
Zhi Ning ◽  
Ming Lv ◽  
Chunhua Sun

2021 ◽  
Author(s):  
Shawna R. Kleban ◽  
Gaurav Bharti ◽  
Bill G. Kortesis

This chapter will discuss the various energy-based modalities that are available to optimize circumferential trunk liposuction to enhance patient results. We will discuss multimodal liposuction using power assisted liposuction, ultrasonic energy addition, as well as radiofrequency assisted modalities to achieve adipose reduction and concurrent skin and soft tissue contraction. An in-depth look at patient selection and intraoperative technique will be presented. The postoperative management for each modality will be discussed in detail, including expected results from each modality and potential complications and their ensuing management. We will also discuss the application of different modalities alone and in combination to achieve superior results.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4884
Author(s):  
Qihao Chen ◽  
Chengcheng Wang ◽  
Yihao Wang ◽  
Jiahui Wang ◽  
Sanbao Lin ◽  
...  

Ultrasonic energy is introduced into the Metal Inert Gas (MIG) welding arc and weld pool by superposition of an ultrasonic frequency current. In this study, the arc shape, arc energy, and ultrasonic energy that responded to ultrasonic excitation voltage and frequency is investigated. The comprehensive influence of arc and ultrasonic energy on weld formation, microstructure, and mechanical properties is further studied. The arc and ultrasonic energy are analyzed by using a high-speed camera and microphone, respectively. The results showed that the arc width increased, and the arc energy density decreased after the superposition of ultrasonic current. The arc height could be compressed under certain ultrasonic excitation parameters. The ultrasonic excitation voltage and frequency had a direct influence on the ultrasonic energy. The arc height, arc energy density, and ultrasonic energy together determined the weld width. Ultrasound could effectively refine the microstructure of the weld zone and fusion zone but had little effect on the heat-affected zone. Ultrasound improved the hardness of the joint by refining the grain and the second phase. The joint hardness was the highest when the ultrasonic excitation voltage was 100 V, and the frequency was 30 kHz.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2501
Author(s):  
Dagmawi Abebe Zewude ◽  
Hironori Izawa ◽  
Shinsuke Ifuku

α-Chitin derived from crab shells was treated with 30% sodium hydroxide to prepare partially deacetylated chitin with a deacetylation degree of 36%. Partially deacetylated chitin nanofibers were prepared by applying weak ultrasonic energy generated by a domestic ultrasonic cleaner. The deacetylated chitin was easily disintegrated into nanofibers with the aid of electrostatic repulsion and osmotic pressure effect of amino cations on the chitin surfaces. The nanofibers were characterized in terms of yield, morphology, crystallinity, viscosity, and dispersibility. After a series of characterizations, ultrasonication with 45 kHz frequency and 20 min treatment was found to be the optimum conditions for obtaining fine nanofibers with a high yield.


2021 ◽  
Author(s):  
Yinghuai Dong ◽  
Jiajun Liu ◽  
Guangyan Li ◽  
Yan Wang

Abstract Compared with traditional EDM, ultrasonic vibration assisted EDM ((UEDM)) shows better performance in machining efficiency and surface quality. But the material removal process of UEDM is complex, and there are many influencing factors, so it is difficult to describe the material removal process accurately. In this study, based on the voltage variation during UEDM processing and combined with the heat transfer theory, the material removal model of TC4 titanium alloy under the condition of single pulse vertical ultrasonic vibration UEDM was established, and the material removal process of UEDM under different amplitudes was analyzed. The machining efficiency and surface quality of UEDM with different ultrasonic energy under the condition of vertical ultrasonic vibration are obtained verified by UEDM experiments. The best ultrasonic energy under different current can be obtained by adjusting the current and ultrasonic vibration energy, which can improve the efficiency of UEDM.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 371
Author(s):  
Jian-Chiun Liou ◽  
Chih-Wei Peng ◽  
Zhen-Xi Chen

Background: A cylindrical piezoelectric element and a specific multi-channel circular microelectromechanical systems (MEMS)-transducer array of ultrasonic system were used for ultrasonic energy generation and ablation. A relatively long time is required for the heat to be conducted to the target position. Ultrasound thermal therapy has great potential for treating deep hyperplastic tissues and tumors, such as breast cancer and liver tumors. Methods: Ultrasound ablation technology produces thermal energy by heating the surface of a target, and the heat gradually penetrates to the target’s interior. Beamforming was performed to observe energy distribution. A resonance method was used to generate ablation energy for verification. Energy was generated according to the coordinates of geometric graph positions to reach the ablation temperature. Results: The mean resonance frequency of Channels 1–8 was 2.5 MHz, and the cylindrical piezoelectric ultrasonic element of Channel A was 4.2546 Ω at 5.7946 MHz. High-intensity ultrasound has gradually been applied in clinical treatment. Widely adopted, ultrasonic hyperthermia involves the use of high-intensity ultrasound to heat tissues at 42–45 °C for 30–60 minutes. Conclusion: In the ultrasonic energy method, when the target position reaches a temperature that significantly reduces the cell viability (46.9 °C), protein surface modification occurs on the surface of the target.


Sign in / Sign up

Export Citation Format

Share Document