Synchronization of the unified chaotic systems using a sliding mode controller

2009 ◽  
Vol 42 (5) ◽  
pp. 3197-3209 ◽  
Author(s):  
Mohamed Zribi ◽  
Nejib Smaoui ◽  
Haitham Salim
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Zhi-ping Shen ◽  
Jian-dong Xiong ◽  
Yi-lin Wu

This paper studies the stabilization problem for a class of unified chaotic systems subject to uncertainties and input nonlinearity. Based on the sliding mode control theory, we present a new method for the sliding mode controller design and the control law algorithm for such systems. In order to achieve the goal of stabilization unified chaotic systems, the presented controller can make the movement starting from any point in the state space reach the sliding mode in limited time and asymptotically reach the origin along the switching surface. Compared with the existing literature, the controller designed in this paper has many advantages, such as small chattering, good stability, and less conservative. The analysis of the motion equation and the simulation results all demonstrate that the method is effective.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Yi-You Hou ◽  
Ben-Yi Liau ◽  
Hsin-Chieh Chen

This paper presents a method for synchronizing the unified chaotic systems via a sliding mode controller (SMC). The unified chaotic system and problem formulation are described. Two identical unified chaotic systems can be synchronized using the SMC technique. The switching surface and its controller design are developed in detail. Simulation results show the feasibility of a chaotic secure communication system based on the synchronization of the Lorenz circuits via the proposed SMC.


2011 ◽  
Vol 474-476 ◽  
pp. 2100-2105
Author(s):  
Xiao Jing Wu ◽  
Xue Li Wu

This paper investigates the robust control problem of the uncertain unified chaotic systems subject to sector input nonlinearity. First, the adaptive parameter is introduced for designing sliding surface such that the parameters of the unified chaotic system are not necessary to know. Then, based on Lyapunov theory, the controller is designed via sliding mode technique, which cancels the assumption that the information on the bound of input nonlinearity should be known for designer in advance. Finally, the sliding mode controller is applied to ensure that different uncertain chaotic systems (Lorenz system, Lü system and Chen system) states can be regulated to zero levels asymptotically in the presence of sector input nonlinearity. The simulation results demonstrated the effectiveness of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document