scholarly journals Uncertain Unified Chaotic Systems Control with Input Nonlinearity via Sliding Mode Control

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Zhi-ping Shen ◽  
Jian-dong Xiong ◽  
Yi-lin Wu

This paper studies the stabilization problem for a class of unified chaotic systems subject to uncertainties and input nonlinearity. Based on the sliding mode control theory, we present a new method for the sliding mode controller design and the control law algorithm for such systems. In order to achieve the goal of stabilization unified chaotic systems, the presented controller can make the movement starting from any point in the state space reach the sliding mode in limited time and asymptotically reach the origin along the switching surface. Compared with the existing literature, the controller designed in this paper has many advantages, such as small chattering, good stability, and less conservative. The analysis of the motion equation and the simulation results all demonstrate that the method is effective.

2007 ◽  
Vol 34 (2) ◽  
pp. 437-442 ◽  
Author(s):  
Tsung-Ying Chiang ◽  
Meei-Ling Hung ◽  
Jun-Juh Yan ◽  
Yi-Sung Yang ◽  
Jen-Fuh Chang

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Jeang-Lin Chang

For a class of linear MIMO uncertain systems, a dynamic sliding mode control algorithm that avoids the chattering problem is proposed in this paper. Without using any differentiator, we develop a modified asymptotically stable second-order sliding mode control law in which the proposed controller can guarantee the finite time convergence to the sliding mode and can show that the system states asymptotically approach to zero. Finally, a numerical example is explained for demonstrating the applicability of the proposed scheme.


2002 ◽  
Vol 8 (2) ◽  
pp. 189-217 ◽  
Author(s):  
Feijun Song ◽  
Edgar An ◽  
Samuel M. Smith

Successful controller development involves three distinct stages, namely, control law design, code debugging and field test. For Autonomous Underwater Vehicle (AUV) applications, the first two stages require special strategies. Since the dynamics of an AUV is highly nonlinear, and the environment that an AUV operates in is noisy with external disturbance that cannot be neglected, a robust control law must be considered in the first stage. The control law design is even more difficult when optimal criteria are also involved. In the second stage, since the software architecture on an AUV is very complicated, debugging the controllers alone without all the software routines running together often can not reveal subtle faults in the controller code. Thorough debugging needs at-sea test, which is costly. Therefore, a platform that can help designers debug and evaluate controller performance before any at-sea experiment is highly desirable. Recently, a 6 Degree of Freedom (DOF) AUV simulation toolbox was developed for the Ocean Explorer (OEX) series AUVs developed at Florida Atlantic University. The simulation toolbox is an ideal platform for controller in-lab debugging and evaluation. This paper first presents a novel robust controller design methodology, named the Sliding Mode Fuzzy Controller (SMFC). It combines sliding mode control and fuzzy logic control to create a robust, easy on-line tunable controller structure. A formal proof of the robustness of the proposed nonlinear sliding mode control is also given. A pitch and a heading controller have been designed with the presented structure and the controller code was tested on the simulation software package as well as at sea. The simulated and at-sea test data are compared. The whole controller design procedure described in this paper clearly demonstrates the advantage of using the simulation toolbox to debug and test the controller in-lab. Moreover, the pitch and heading controller have been used in the real system for more than 2 years, and have also been successfully ported to other types of vehicles without any major modification on the controller parameters. The similarity of the controller performances on different vehicles further demonstrates the robustness of the proposed Sliding Mode Fuzzy Controller. The main contribution of this paper is to provide useful insights into the design and implementation of the proposed control architecture, and its application in AUV control.


1997 ◽  
Vol 119 (2) ◽  
pp. 307-312 ◽  
Author(s):  
Jun-Juh Yan ◽  
Jason Sheng-Hong Tsai ◽  
Fan-Chu Kung

The present paper is concerned with the decentralized stabilization problem of large-scale systems with delays in the intercon-nections using sliding mode control. A robust stability condition of the sliding mode and a robust decentralized sliding mode controller are newly derived for large-scale delay systems. Also a proportional-integral sliding mode is designed to make it easy to assure the stability of dynamics in the sliding mode.


Sign in / Sign up

Export Citation Format

Share Document