scholarly journals Sr-isotope analysis of speleothems by LA-MC-ICP-MS: High temporal resolution and fast data acquisition

2017 ◽  
Vol 468 ◽  
pp. 63-74 ◽  
Author(s):  
Michael Weber ◽  
Jasper A. Wassenburg ◽  
Klaus Peter Jochum ◽  
Sebastian F.M. Breitenbach ◽  
Jessica Oster ◽  
...  
2020 ◽  
Author(s):  
Gavin L. Foster ◽  
Thomas B. Chalk ◽  
Christopher D. Standish

<p>Despite being some of the largest bio-constructions on the planet, coral reefs are made by many millions of cm- to mm-sized polyps of Scleractinian corals. Calcification occurs in a micron sized space sandwiched between the coral animal and the existing skeleton, known as the extra cellular medium (ECM). The coral animal has a tight control on the carbonate system in this space through deploying enzymatic pumps (e.g. Ca-ATPase) and secreting acidic-rich proteins. Tracking the state of the carbonate system in the ECM is therefore key to forming a mechanistic understanding of how environmental change, such as ocean acidification, influences skeletal formation and ultimately the growth and resilience of these important ecosystems.</p><p>Traditional means to examine ECM composition is through the use of micro-electrodes. While these approaches have revealed many key insights they are, by their nature, invasive.  They also only provide snap shots of information for corals grown in the laboratory. The boron isotopic composition of the coral skeleton and its boron content (expressed as B/Ca ratio) have recently emerged as a viable alternative approach to fully characterise the carbonate system in the ECM.  However, most studies employ bulk sampling techniques which require averaging across both structural elements of the coral skeleton and many months to years of growth. Laser ablation MC-ICP-MS approaches are now available as an alternative sampling protocol (e.g. Standish et al. 2019), and along with B/Ca (and other trace element) measurements this not only allows a reconstruction of the full carbonate system of the ECM from an analysis of the skeleton of any coral (cultured or wild) at unprecedented spatial and temporal resolution, but it also allows an examination of the influence of the carbonate system in the ECM on trace element incorporation. </p><p>Here we present boron isotope and trace element analyses of several tropical, reef-building, corals to examine the nature and magnitude of fine scale variation in ECM composition.  By studying corals from locations where external seawater is well known we also gain insights into trace element incorporation and whether external seawater pH can be accurately reconstructed from the boron-based proxies at weekly (or better) resolution. </p><p> </p><p>Standish, C.D., Chalk, T.B., Babila, T.L., Milton, J.A., Palmer, M.R., Foster, G.L. (2019) The effect of matrix interferences in situ boron isotope analysis by laser ablation MC-ICP-MS, Rapid Communications in Mass Spectrometry 33: 959–968 https://doi.org/10.1002/rcm.8432</p>


2010 ◽  
Vol 6 (2) ◽  
pp. 43 ◽  
Author(s):  
Andreas H Mahnken ◽  

Over the last decade, cardiac computed tomography (CT) technology has experienced revolutionary changes and gained broad clinical acceptance in the work-up of patients suffering from coronary artery disease (CAD). Since cardiac multidetector-row CT (MDCT) was introduced in 1998, acquisition time, number of detector rows and spatial and temporal resolution have improved tremendously. Current developments in cardiac CT are focusing on low-dose cardiac scanning at ultra-high temporal resolution. Technically, there are two major approaches to achieving these goals: rapid data acquisition using dual-source CT scanners with high temporal resolution or volumetric data acquisition with 256/320-slice CT scanners. While each approach has specific advantages and disadvantages, both technologies foster the extension of cardiac MDCT beyond morphological imaging towards the functional assessment of CAD. This article examines current trends in the development of cardiac MDCT.


2021 ◽  
Author(s):  
◽  
Ramona Mahia White

<p>Nearshore New Zealand mollusca (shellfish) have the potential to be important archives of environmental conditions and change. Ambient ocean chemistry can be incorporated into the calcium carbonate (CaCO3) shell during the life span of the mollusc providing a high resolution temporal record of the chemical and physical changes of the environments the mollusc lived in. Previous studies on foraminifera and coral have shown that the substitution of magnesium or strontium for calcium (Mg, Sr/Ca) during the formation of the CaCO3 shell is directly correlated with ocean temperatures. Other divalent cations (e.g., Sr2+, Ba2+, Pb2+) can also provide information on ambient salinity, primary productivity or nutrient levels, and local anthropogenic pollution. This study uses new geochemical techniques that have been developed to measure the trace element chemistry of CaCO3 mollusc shells at high temporal resolution, using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in order to calibrate shell chemistry with environmental conditions. This study is the first to explore the use of the geochemistry of Haliotis iris as a potential proxy for (paleo-) environmental conditions. Pāua (Haliotis iris) were collected from six different localities around New Zealand and the Chatham Islands as well as a cultured environment (OceaNZ Blue Ltd). The shells were sectioned following the axis of maximum growth exposing both CaCO3 layers; the prismatic (predominantly calcite) and nacreous (aragonite) layers. The shells were analysed by LA-ICP-MS at 25 μm spot sizes through a high temporal transect of both layers. Observed differences in the element/Ca ratios between the prismatic and nacreous layer reflect the differing crystallinity of each layer. High temporal resolution Mg/Ca ratio data of the prismatic layer of the samples which grew in a cultured environment were compared with temperature and growth data supplied by OceaNZ Blue Ltd. The results showed that temperature was not the primary control on the uptake of Mg within the shells and that influences from biological factors including increased growth rate were also evident. Sr/Ca ratios show a weak inverse relationship with increased growth rate assumed. These results, however, are not reproducible within samples collected from the wild, showing that external factors (high wave energy, diet, predation, lack of food) place metabolic stress on the pāua. The monitoring of other element/Ca including Ba/Ca, Al/Ca, Pb/Ca and Zn/Ca ratios have the potential to provide information into the past frequency of storm events that deliver sediment into the oceans and remobilise other sediments and changing levels of environmental pollution. This is reflected through increased Al/Ca, Pb/Ca and Zn/Ca ratios during the winter season in a number of samples (n = 3) gained from the high resolution analysis of the prismatic layers. Overall, element/Ca ratios are difficult to correlate environmental conditions in samples from the wild as there are many different parameters influencing the uptake of element/Ca ratios with the shells of pāua. Uncertainties lie with a lack of understanding of the biological controls influencing pāua during biomineralisation including the transportation of the elements within organism to the extrapallial fluid to be biomineralised, ontogeny, and the rate and regularity of biomineralisation of shell material.</p>


2021 ◽  
Author(s):  
◽  
Ramona Mahia White

<p>Nearshore New Zealand mollusca (shellfish) have the potential to be important archives of environmental conditions and change. Ambient ocean chemistry can be incorporated into the calcium carbonate (CaCO3) shell during the life span of the mollusc providing a high resolution temporal record of the chemical and physical changes of the environments the mollusc lived in. Previous studies on foraminifera and coral have shown that the substitution of magnesium or strontium for calcium (Mg, Sr/Ca) during the formation of the CaCO3 shell is directly correlated with ocean temperatures. Other divalent cations (e.g., Sr2+, Ba2+, Pb2+) can also provide information on ambient salinity, primary productivity or nutrient levels, and local anthropogenic pollution. This study uses new geochemical techniques that have been developed to measure the trace element chemistry of CaCO3 mollusc shells at high temporal resolution, using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in order to calibrate shell chemistry with environmental conditions. This study is the first to explore the use of the geochemistry of Haliotis iris as a potential proxy for (paleo-) environmental conditions. Pāua (Haliotis iris) were collected from six different localities around New Zealand and the Chatham Islands as well as a cultured environment (OceaNZ Blue Ltd). The shells were sectioned following the axis of maximum growth exposing both CaCO3 layers; the prismatic (predominantly calcite) and nacreous (aragonite) layers. The shells were analysed by LA-ICP-MS at 25 μm spot sizes through a high temporal transect of both layers. Observed differences in the element/Ca ratios between the prismatic and nacreous layer reflect the differing crystallinity of each layer. High temporal resolution Mg/Ca ratio data of the prismatic layer of the samples which grew in a cultured environment were compared with temperature and growth data supplied by OceaNZ Blue Ltd. The results showed that temperature was not the primary control on the uptake of Mg within the shells and that influences from biological factors including increased growth rate were also evident. Sr/Ca ratios show a weak inverse relationship with increased growth rate assumed. These results, however, are not reproducible within samples collected from the wild, showing that external factors (high wave energy, diet, predation, lack of food) place metabolic stress on the pāua. The monitoring of other element/Ca including Ba/Ca, Al/Ca, Pb/Ca and Zn/Ca ratios have the potential to provide information into the past frequency of storm events that deliver sediment into the oceans and remobilise other sediments and changing levels of environmental pollution. This is reflected through increased Al/Ca, Pb/Ca and Zn/Ca ratios during the winter season in a number of samples (n = 3) gained from the high resolution analysis of the prismatic layers. Overall, element/Ca ratios are difficult to correlate environmental conditions in samples from the wild as there are many different parameters influencing the uptake of element/Ca ratios with the shells of pāua. Uncertainties lie with a lack of understanding of the biological controls influencing pāua during biomineralisation including the transportation of the elements within organism to the extrapallial fluid to be biomineralised, ontogeny, and the rate and regularity of biomineralisation of shell material.</p>


2018 ◽  
Vol 411 (3) ◽  
pp. 565-580 ◽  
Author(s):  
Anika Retzmann ◽  
Magdalena Blanz ◽  
Andreas Zitek ◽  
Johanna Irrgeher ◽  
Jörg Feldmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document