Geochemical evidence for partial melting of progressively varied crustal sources for leucogranites during the Oligocene–Miocene in the Himalayan orogen

2021 ◽  
pp. 120674
Author(s):  
Min Ji ◽  
Xiao-Ying Gao ◽  
Yong-Fei Zheng
Author(s):  
Peng Gao ◽  
Yong-Fei Zheng ◽  
Matthew Jason Mayne ◽  
Zi-Fu Zhao

Himalayan leucogranites of Cenozoic age are generally attributed to partial melting of metasedimentary rocks at low temperatures of <770 °C. It is unknown what the spatial distribution and characteristics of high-temperature (>800 °C) leucogranites are in the Himalayan orogen. The present study reports the occurrence of such leucogranites in the collisional orogen. We use the Ti-in-zircon thermometry in combination with the thermodynamically calibrated relationships of T-aSiO2-aTiO2 to retrieve crystallization temperatures of Miocene (ca. 17 Ma) two-mica granites from Yalaxiangbo, in the eastern Himalaya, SE Tibet. The results give the maximum temperature as high as ∼850 °C for granite crystallization, providing a significant constraint on the nature of thermal sources. Phase equilibrium modeling using metasedimentary rocks as the source rocks indicates that felsic melts produced at ∼850 °C and 6−10 kbar can best match the target leucogranites in lithochemistry. In this regard, the anatectic temperatures previously obtained for the production of Himalayan leucogranites would probably be underestimated to some extent. Such high temperatures are difficult to explain purely by the internal heating of the thickened orogenic crust. Instead, they require an extra heat source, which would probably be provided by upwelling of asthenospheric mantle subsequent to thinning of the orogenic lithospheric mantle by foundering along the convergent plate boundary. Therefore, the Himalayan leucogranites of Miocene age would be derived from partial melting of the metasedimentary rocks in the post-collisional stage.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jia Liu ◽  
Naoto Hirano ◽  
Shiki Machida ◽  
Qunke Xia ◽  
Chunhui Tao ◽  
...  

AbstractA discontinuity in the seismic velocity associated with the lithosphere-asthenosphere interface, known as the Gutenberg discontinuity, is enigmatic in its origin. While partial mantle melts are frequently suggested to explain this discontinuity, it is not well known which factors critically regulate the melt production. Here, we report geochemical evidence showing that the melt fractions in the lithosphere-asthenosphere boundary were enhanced not only by accumulation of compacted carbonated melts related to recycled ancient marine sediments, but also by partial melting of a pyroxene-rich mantle domain related to the recycled oceanic eclogite/pyroxenites. This conclusion is derived from the first set of Mg isotope data for a suite of young petit-spot basalts erupted on the northwest Pacific plate, where a clearly defined Gutenberg discontinuity exists. Our results reveal a specific linkage between the Gutenberg discontinuity beneath the normal oceanic regions and the recycling of ancient subducted crust and carbonate through the deep Earth.


Author(s):  
Peng Gao ◽  
Yong-Fei Zheng ◽  
Chris Yakymchuk ◽  
Zi-Fu Zhao ◽  
Zi-Yue Meng

Abstract Granites are generally the final products of crustal anatexis. The composition of the initial melts may be changed by fractional crystallization during magma evolution. Thus, it is crucial to retrieve the temperatures and pressures conditions of crustal anatexis on the basis of the composition of the initial melts rather than the evolved melts. Here we use a suite of ∼46–41 Ma granites from the Himalayan orogen to address this issue. These rocks can be divided into two groups in terms of their petrological and geochemical features. One group has high maficity (MgO + FeOt = 2–4 wt%) and mainly consists of two-mica granites, and is characterized by apparent adakite geochemical signatures, including high Sr concentrations, Sr/Y and La/Yb ratios; and low concentrations of HREE (heavy rare earth elements) and Y. The other group has low maficity (MgO + FeOt <1 wt%) and consists of subvolcanic porphyritic granites and garnet/tourmaline-bearing leucogranites. This group does not possess apparent adakite signatures. The low maficity group (LMG) has lower MgO + FeOt contents and the high maficity group (HMG) has higher Mg# compared with initial anatectic melts determined by experiment petrology and melt inclusions study. Petrological observations indicate that the HMG and the LMG can be explained as a crystal-rich cumulate and its fractionated melt, respectively, such that the initial anatectic melt is best represented by an intermediate composition. Such a cogenetic relationship is supported by the comparable Sr–Nd isotopic compositions of the two coeval groups. However, these compositions are also highly variable, pointing to a mixed source that was composed of amphibolite and metapelite with contrasting isotope compositions. We model the major and trace element compositions of anatectic melts generated by partial melting of the mixed source at four apparent thermobaric ratios of 600, 800, 1000 and 1200 °C/GPa. Modeling results indicate that melt produced at 1000 °C/GPa best matches the major and trace element compositions of the inferred initial melt compositions. In particular, a binary mixture generated from 10 vol% partial melting of amphibolite and 30 vol% melting of metapelite at 850 ± 50 °C and 8.5 ± 0.5 kbar gives the best match. Therefore, this study highlights that high thermobaric ratios and subsequent fractional crystallization are responsible for the generation of the apparent adakitic geochemical signatures, rather than melting at the base of the thickened crust as previously proposed. The thermal anomaly responsible for the Eocene magmatism in the Himalayan orogen was probably related to asthenosphere upwelling in response to rollback of the subducting Neo-Tethyan oceanic slab at the terminal stage of continental collision between India and Asia. As such, a transition in dynamic regime from compression to extension is necessary for the generation of high thermobaric ratios in the continental collision zone. Therefore, on the basis of evaluating the potential role of fractional crystallization in altering the composition of the initial melt, granite geochemistry coupled with thermodynamic modeling can better elucidate the petrogenesis of granites and the geodynamic mechanisms associated with anatexis at convergent plate boundaries.


2019 ◽  
Vol 132 (7-8) ◽  
pp. 1347-1364 ◽  
Author(s):  
Yu-Wei Tang ◽  
Long Chen ◽  
Zi-Fu Zhao ◽  
Yong-Fei Zheng

Abstract Although continental crust is characterized by the widespread occurrence of granitoids, the causal relationship between continental crust growth and granitic magmatism still remains enigmatic. While fractional crystallization of basaltic magmas (with or without crustal contamination) and partial melting of mafic lower crust are two feasible mechanisms for the production of granitoids in continental arc regions, the problem has been encountered in discriminating between the two mechanisms by whole-rock geochemistry. This can be resolved by an integrated study of zircon U-Pb ages and Hf-O isotopes together with whole-rock major-trace elements and Sr-Nd-Pb isotopes, which is illustrated for Mesozoic granitoids from the Gangdese orogen in southern Tibet. The results provide geochemical evidence for prompt reworking of the juvenile mafic arc crust in the newly accreted continental margin. The target granitoids exhibit high contents of SiO2 (65.76–70.75 wt%) and Na2O + K2O (6.38–8.15 wt%) but low contents of MgO (0.19–0.98 wt%), Fe2O3 (0.88–3.13 wt%), CaO (2.00–3.82 wt%), Ni (<5.8 ppm), and Cr (≤10 ppm). They are enriched in large ion lithophile elements, Pb, and light rare earth elements but depleted in high field strength elements. The granitoids are relatively depleted in whole-rock Sr-Nd isotope compositions with low (87Sr/86Sr)i ratios of 0.7043–0.7048 and positive εNd(t) values of 0.5–2.6, and have relatively low 207Pb/204Pb and 208Pb/204Pb ratios at given 206Pb/204Pb ratios. Laser ablation–inductively coupled plasma–mass spectrometry and secondary ion mass spectrometry U-Pb dating on synmagmatic zircons yield ages of 77 ± 2–81 ± 1 Ma in the Late Cretaceous for their emplacement. Relict zircons have two groups of U-Pb ages in the late Mesozoic and the late Paleozoic, respectively. The whole-rock Sr-Nd isotopes in the granitoids are quite similar to those of Late Cretaceous mafic rocks in the Gangdese batholith. In addition, both synmagmatic zircons and relict zircons with Late Cretaceous U-Pb ages exhibit almost the same Hf-O isotope compositions to those of the slightly earlier mafic rocks. All these observations indicate that the granitoids were mainly derived from partial melting of the juvenile mafic arc crust. Therefore, reworking of the juvenile mafic arc crust is the mechanism for the origin of isotopically depleted granitoids in southern Tibet. It is this process that leads to differentiation of the juvenile mafic arc crust toward the felsic lithology in the continental arc. In this regard, the granitoids with depleted radiogenic isotope compositions do not necessarily contribute to the crustal growth at convergent plate boundaries.


2000 ◽  
Vol 12 (1) ◽  
pp. 105-116 ◽  
Author(s):  
Andrea Orlando ◽  
Sandro Conticelli ◽  
Pietro Armienti ◽  
Daniele Borrini

Experiments to reconstruct the liquidus curve and establish the phase relationships of a basanite (Mg# = 72) from the McMurdo Volcanic Group, (thought to represent a nearly primary magma) used 1.0– 3.0 GPa and 1175–1550°C. The results suggest that this basanite could be generated by partial melting either of a spinel Iherzolite (at P = 1.5–2.0 GPa and T = 1390–1490°C) or of a garnet pyroxenite (at P > 3.0 GPa and T > 1550°C) source. Several lines of petrological and geochemical evidence support the latter hypothesis. Moreover, experimental results indicate the presence of mica in the source if it is assumed that the magma lost some water during its ascent to the surface. This is supported by the presence of mica and amphibole-bearing mantle xenoliths hosted in the most primitive volcanic rocks of the McMurdo Volcanic Group. These results and observations suggest that the source of magmas underwent metasomatism prior to partial melting.


Sign in / Sign up

Export Citation Format

Share Document