volcanic group
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 31)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Vol 5 (2) ◽  
pp. 34-39
Author(s):  
Kifayat Ullah Shah ◽  
Akhtar Muhammad Kassi ◽  
Aimal Khan Kasi

The newly proposed Middle Cretaceous “Bibai Group”, named after the Bibai peak, is exposed in Kach-Ziarat, Spera Ragha-Chingun areas of the Western Sulaiman Fold-Thrust Belt, Pakistan. It comprises thick succession of the mafic volcanic rocks, volcanic conglomerate, mudstone and sandstone. The stratigraphic nomenclature proposed by previous workers was not clear enough, as they used different names for the succession, such as “Kahan Conglomerate Member” of the Mughal Kot Formation, “Parh-related volcanics” by considering it as part of the “Parh Group, “Bibai Formation” and “Bela Volcanic Group”, which were confusing and misleading. Also previous workers did not realize that the succession may be further classified into distinct mappable lithostratigraphic units and deserved the status of a “Group”. Therefore, we carefully examined and mapped the area and hereby propose the name “Bibai Group” for the overall volcanic and volcaniclastic succession of the Middle Cretaceous age. Based on distinct lithostratigraphic characters we further subdivided the “Group” into two lithostratigraphic units of formation rank, for which we propose the names “Chinjun Volcanics” and “Bibai Formation”. Also based on distinct lithostratigraphic characters we further propose to subdivide our “Babai Formation” into three lithostratigraphic units of member rank, which we named as the “Kahan Conglomerate Member”, “Ahmadun Member” and “Kach Mudstone Member”. In this paper we have defined and briefly described the Bibai Group, its constituent formations and their members. Also we examined and discussed the validity and status of the proposed subdivisions; e.g. formations and members, of the Bibai Group, and are fully satisfied that the proposed subdivisions are appropriate and comply with the Article 24 and 25 of the North American Stratigraphic Codes (2005) and that the previous nomenclatures are inconsistent, confusing and do not comply with the International Stratigraphic Codes.


Lithos ◽  
2021 ◽  
pp. 106564
Author(s):  
O.E. McLeod ◽  
M. Brenna ◽  
R.M. Briggs ◽  
A. Pittari

2021 ◽  
Author(s):  
◽  
Philip Raymond Kyle

<p>Rocks of the McMurdo Volcanic Group occur as stratovolcanoes, shield volcanoes, scoria cones, plugs, flows and volcanic piles up to 4000 m high along the Ross Sea margin of the Transantarctic Mountains and make up the Balleny Islands 300 km north of the Antarctic continental margin. The rocks are predominantly undersaturated and range from alkali basalt and basanite to trachyte and phonolite. Four volcanic provinces are recognised; Balleny, Hallett, Melbourne and Erebus. The Balleny volcanic province is situated along a transform fault in the South Pacific Ocean. The rocks are predominantly basanite. Hallett volcanic province occurs along the coast of northern Victoria Land as four elongate piles formed extensive of hyaloclastites, tuffs, breccias and capped by subaerial eruptive products. The lavas are a basanite/alkali basalt-trachyte-quartz trachyte association, and were extruded over the last 7 m.y. Melbourne volcanic province stretches across the Transantarctic Mountains in northern Victoria Land and ranges in age from 0 to 7 m.y. A Central Suite of intermediate and trachytic lavas form stratovolcanoes, cones and plugs, while many small basanite outcrops constitute a Local Suite. Three lava lineages, resulting from differentiation, are recognised. 1) Lavas at The Pleiades and Mt Overlord consist of a mildly potassic trachyandesite-tristanite-K-trachyte-peralkaline K-trachyte lineage. Major, trace and rare earth element (REE) data suggest evolution by fractional crystallization of olivine, clinopyroxene, magnetite, apatite and feldspar. 2) A basanite-nepheline hawaiite-nepheline mugearite-nepheline benmoreite lineage, found at The Pleiades is believed to result from fractional crystallization of olivine, clinopyroxene, kaersutite, magnetite, apatite and feldspar. 3) An oversaturated (Q = 0 to 18%) strongly potassic quartz trachyandesite-quartz tristanite-quartz trachyte lineage occurs at only Mt Melbourne. The Erebus volcanic province covers all McMurdo Volcanic Group rocks in south Victoria Land. Mt Erebus itself is still active, but the province includes rocks as old as 15 m.y. Two lava lineages very similar chemically are recognised: 1) The Erebus lineage consists of strongly porphyritic nepheline hawaiite-nepheline benmoreite-anorthoclase phonolite. Phenocrysts of feldspar, clinopyroxene, olivine, magnetite and apatite are characteristic. The chemistry of the lineage is compatible with fractional crystallization of the phenocryst phases. 2) A kaersutite lineage consists of basanite-nepheline hawaiite-nepheline mugearite-nepheline benmoreite-kaersutite phonolite-pyroxene phonolite. Clinopyroxene (Wo44-48 En40-48 Fs7-14) is ubiquitous, kaersutite is common in all intermediate lavas and primary olivine (Fa12 to Fa26) is confined to the basanites. Major element mass balance models for lavas from Hut Point Peninsula suggest formation by fractional crystallization of olivine, clinopyroxene, spinel (includes magnetite and ilmenite), kaersutite, feldspar and apatite. Middle REE show a marked depletion consistent with kaersutite fractionation. REE abundances were evaluated using the mass balance models and published partition coefficients. Calculated REE abundances show excellent agreement with the measured values. Abundances of "incompatible" elements Pb, Rb, Cs, Th and U are not consistent with the models and "volatile enrichment" processes are invoked to explain their abundances. Intermediate lavas of the kaersutite lineage are rare in the Erebus volcanic province, occurring only at Hut Point Peninsula and Brown Peninsula. At other areas basanite and phonolite lavas predominate. However these are considered to form by fractional crystallization processes similar to Hut Point Peninsula lavas. Erebus lineage lavas differentiated at higher temperatures and, lower PH2O than those of the kaersutite lineage, which characterize the periphery of Ross Island. REE abundances and comparison with experimental melting studies indicate DVDP basanite originated by a low degree of partial melting (1-5%) of a hydrous garnet peridotite mantle at pressures of 25-30 kbars. These data suggest that Ross Island is the site of a mantle plume with a diameter of, about 100 km and centred on Mt Erebus.</p>


2021 ◽  
Author(s):  
◽  
Philip Raymond Kyle

<p>Rocks of the McMurdo Volcanic Group occur as stratovolcanoes, shield volcanoes, scoria cones, plugs, flows and volcanic piles up to 4000 m high along the Ross Sea margin of the Transantarctic Mountains and make up the Balleny Islands 300 km north of the Antarctic continental margin. The rocks are predominantly undersaturated and range from alkali basalt and basanite to trachyte and phonolite. Four volcanic provinces are recognised; Balleny, Hallett, Melbourne and Erebus. The Balleny volcanic province is situated along a transform fault in the South Pacific Ocean. The rocks are predominantly basanite. Hallett volcanic province occurs along the coast of northern Victoria Land as four elongate piles formed extensive of hyaloclastites, tuffs, breccias and capped by subaerial eruptive products. The lavas are a basanite/alkali basalt-trachyte-quartz trachyte association, and were extruded over the last 7 m.y. Melbourne volcanic province stretches across the Transantarctic Mountains in northern Victoria Land and ranges in age from 0 to 7 m.y. A Central Suite of intermediate and trachytic lavas form stratovolcanoes, cones and plugs, while many small basanite outcrops constitute a Local Suite. Three lava lineages, resulting from differentiation, are recognised. 1) Lavas at The Pleiades and Mt Overlord consist of a mildly potassic trachyandesite-tristanite-K-trachyte-peralkaline K-trachyte lineage. Major, trace and rare earth element (REE) data suggest evolution by fractional crystallization of olivine, clinopyroxene, magnetite, apatite and feldspar. 2) A basanite-nepheline hawaiite-nepheline mugearite-nepheline benmoreite lineage, found at The Pleiades is believed to result from fractional crystallization of olivine, clinopyroxene, kaersutite, magnetite, apatite and feldspar. 3) An oversaturated (Q = 0 to 18%) strongly potassic quartz trachyandesite-quartz tristanite-quartz trachyte lineage occurs at only Mt Melbourne. The Erebus volcanic province covers all McMurdo Volcanic Group rocks in south Victoria Land. Mt Erebus itself is still active, but the province includes rocks as old as 15 m.y. Two lava lineages very similar chemically are recognised: 1) The Erebus lineage consists of strongly porphyritic nepheline hawaiite-nepheline benmoreite-anorthoclase phonolite. Phenocrysts of feldspar, clinopyroxene, olivine, magnetite and apatite are characteristic. The chemistry of the lineage is compatible with fractional crystallization of the phenocryst phases. 2) A kaersutite lineage consists of basanite-nepheline hawaiite-nepheline mugearite-nepheline benmoreite-kaersutite phonolite-pyroxene phonolite. Clinopyroxene (Wo44-48 En40-48 Fs7-14) is ubiquitous, kaersutite is common in all intermediate lavas and primary olivine (Fa12 to Fa26) is confined to the basanites. Major element mass balance models for lavas from Hut Point Peninsula suggest formation by fractional crystallization of olivine, clinopyroxene, spinel (includes magnetite and ilmenite), kaersutite, feldspar and apatite. Middle REE show a marked depletion consistent with kaersutite fractionation. REE abundances were evaluated using the mass balance models and published partition coefficients. Calculated REE abundances show excellent agreement with the measured values. Abundances of "incompatible" elements Pb, Rb, Cs, Th and U are not consistent with the models and "volatile enrichment" processes are invoked to explain their abundances. Intermediate lavas of the kaersutite lineage are rare in the Erebus volcanic province, occurring only at Hut Point Peninsula and Brown Peninsula. At other areas basanite and phonolite lavas predominate. However these are considered to form by fractional crystallization processes similar to Hut Point Peninsula lavas. Erebus lineage lavas differentiated at higher temperatures and, lower PH2O than those of the kaersutite lineage, which characterize the periphery of Ross Island. REE abundances and comparison with experimental melting studies indicate DVDP basanite originated by a low degree of partial melting (1-5%) of a hydrous garnet peridotite mantle at pressures of 25-30 kbars. These data suggest that Ross Island is the site of a mantle plume with a diameter of, about 100 km and centred on Mt Erebus.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diego Coppola ◽  
Marco Laiolo ◽  
Francesco Massimetti ◽  
Sebastian Hainzl ◽  
Alina V. Shevchenko ◽  
...  

Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 395
Author(s):  
Liang-Chi Wang

Paleoecological data can be used to inform nature conservation practice. Dream Lake (DL) is the best-preserved peat bog in the Tatun Volcanic Group of northern Taiwan. We analyzed continuous pollen and charcoal data from a well-dated sediment core from DL to reconstruct the changes in climate, lacustrine condition, and floristic diversity during the last 4500 cal BP. An absence of volcanic ash from all sediments indicates weak volcanic activity. Significant changes in lithology and pollen composition show that DL changed from a deep lake to a shallow peat bog from 3000 cal BP onwards. The palynological diversity index was negatively correlated with fire frequency. A substantial decline in Isoetes (quillwort) spores suggests increased vulnerability during the peat bog period. Natural terrestrialization will lower the mean water depth of DL below the minimum required for Isoetes taiwanensis survival within 300 years. Our findings indicate that winter precipitation driven by intense East Asian winter monsoons is the critical force determining the long-term variation in floristic diversity and abundance of I. taiwanensis. This long-term ecological history of DL, derived using paleoecological techniques, will be used to inform conservation practice in the Tatun Volcanic Group.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diego Coppola ◽  
Laiolo Marco ◽  
Francesco Massimetti ◽  
Sebastian Hainzl ◽  
Alina V. Shevchenko ◽  
...  

AbstractVolcanoes are traditionally considered isolated with an activity that is mostly independent of the surrounding, with few eruptions only (< 2%) associated with a tectonic earthquake trigger. Evidence is now increasing that volcanoes forming clusters of eruptive centers may simultaneously erupt, show unrest, or even shut-down activity. Using infrared satellite data, we detail 20 years of eruptive activity (2000–2020) at Klyuchevskoy, Bezymianny, and Tolbachik, the three active volcanoes of the Klyuchevskoy Volcanic Group (KVG), Kamchatka. We show that the neighboring volcanoes exhibit multiple and reciprocal interactions on different timescales that unravel the magmatic system’s complexity below the KVG. Klyuchevskoy and Bezymianny volcanoes show correlated activity with time-predictable and quasiperiodic behaviors, respectively. This is consistent with magma accumulation and discharge dynamics at both volcanoes, typical of steady-state volcanism. However, Tolbachik volcano can interrupt this steady-state regime and modify the magma output rate of its neighbors for several years. We suggest that below the KVG the transfer of magma at crustal level is modulated by the presence of three distinct but hydraulically connected plumbing systems. Similar complex interactions may occur at other volcanic groups and must be considered to evaluate the hazard of grouped volcanoes.


2021 ◽  
pp. 126515
Author(s):  
Hung-Chun Chao ◽  
Ju-Lien Pi ◽  
Chen-Feng You ◽  
Ying-Tzung Shieh ◽  
Hsueh-Yu Lu ◽  
...  
Keyword(s):  

2021 ◽  
Vol 176 (5) ◽  
Author(s):  
Sylvin S. T. Tedonkenfack ◽  
Jacek Puziewicz ◽  
Sonja Aulbach ◽  
Theodoros Ntaflos ◽  
Mary-Alix Kaczmarek ◽  
...  

AbstractThe origin and evolution of subcontinental lithospheric mantle (SCLM) are important issues of Earth’s chemical and physical evolution. Here, we report detailed textural and chemical analyses on a mantle xenolith suite from Befang (Oku Volcanic Group, Cameroon Volcanic Line), which represents a major tectono-magmatic structure of the African plate. The samples are sourced from spinel-facies mantle and are dominated by lherzolites. Their texture is cataclastic to porphyroclastic, and foliation defined by grain-size variation and alignment of spinel occurs in part of peridotites. Spinel is interstitial and has amoeboidal shape. Clinopyroxene REE patterns are similar to those of Depleted MORB Mantle (DMM) except LREEs, which vary from depleted to enriched. The A-type olivine fabric occurs in the subset of one harzburgite and 7 lherzolites studied by EBSD. Orthopyroxene shows deformation consistent with olivine. The fabric of LREE-enriched clinopyroxene is equivalent to those of orthopyroxene and olivine, whereas spinel and LREE-depleted clinopyroxene are oriented independently of host rock fabric. The textural, chemical and thermobarometric constraints indicate that the Befang mantle section was refertilised by MORB-like melt at pressures of 1.0–1.4 GPa and temperatures slightly above 1200–1275 °C. The olivine-orthopyroxene framework and LREE-enriched clinopyroxene preserve the protolith fabric. In contrast, the LREE-depleted clinopyroxene, showing discordant deformation relative to the olivine-orthopyroxene protolith framework, and amoeboidal spinel crystallized from the infiltrating melt. The major element and REEs composition of minerals forming the Befang peridotites indicate subsequent reequilibration at temperatures 930–1000 °C. This was followed by the formation of websterite veins in the lithospheric mantle, which can be linked to Cenozoic volcanism in the Cameroon Volcanic Line that also brought the xenoliths to the surface. This study therefore supports the origin of fertile SCLM via refertilization rather than by extraction of small melt fractions, and further emphasizes the involvement of depleted melts in this process.


Sign in / Sign up

Export Citation Format

Share Document