Water-soluble fraction of mercury, arsenic and other potentially toxic elements in highly contaminated sediments and soils

Chemosphere ◽  
2010 ◽  
Vol 78 (11) ◽  
pp. 1301-1312 ◽  
Author(s):  
S.M. Rodrigues ◽  
B. Henriques ◽  
J. Coimbra ◽  
E. Ferreira da Silva ◽  
M.E. Pereira ◽  
...  
2020 ◽  
pp. geochem2020-052
Author(s):  
I.N. Myagkaya ◽  
B.Yu. Saryg-ool ◽  
Oleg N. Surkov ◽  
S.M. Zhmodik ◽  
E.V. Lazareva ◽  
...  

We study the contents of elements and group composition in natural organic matter (NOM) that interacts with acid mine drainage (АMD) and high-sulfide tailings at the Ursk site (Southwestern Siberia, Russia). AMD causes biomass changes in NOM, related changes in the composition of fractions, and hydrolysis of hydrolyzable compounds; it increases the water-soluble fraction and maintains depolymerization of humic acids to fulvic acids, but exerts no effect on substances soluble in organics (bitumen) and on poorly hydrolyzable compounds. Accumulation of inorganic elements and precipitation of minerals obscure the true fraction composition of NOM: the superposed mineral component contributes significantly to the water-soluble, humic acid, hydrolyzable, and non-hydrolyzable fractions, and may reach 26.4 % per total of all fractions. Rock-forming and potentially toxic elements partition among NOM fractions and predominate in the water-soluble fraction. The contents of Au and Ag are the highest in the fractions of humic acids and hydrolyzable compounds but are lower in the non-hydrolyzable residue. The obtained data have implications for possible migration of potentially toxic elements and noble metals and thus for remediation of polluted areas. The observed fractionation of Ag and Au in NOM helps understand the mechanisms of their distribution in organic-bearing environments, such as peatlands or coal basins.


2014 ◽  
Vol 91 (5) ◽  
pp. 473-481 ◽  
Author(s):  
Guiai Jiao ◽  
Xiangjin Wei ◽  
Gaoneng Shao ◽  
Lihong Xie ◽  
Zhonghua Sheng ◽  
...  

1957 ◽  
Vol 35 (4) ◽  
pp. 241-250 ◽  
Author(s):  
W. G. Martin ◽  
J. E. Vandegaer ◽  
W. H. Cook

Livetin, the major water-soluble protein of hen egg yolk, was found to contain three major components having mobilities of −6.3, −3.8, and −2.1 cm.2 sec.−1 volt−1 at pH 8, µ 0.1, and these have been designated α-, β-, and γ-livetin respectively. The α- and β-livetins were separated and purified electrophoretically after removal of γ-livetin by precipitation from 37% saturated ammonium sulphate or 20% isopropanol. The α-, β-, and mixed livetins resembled pseudoglobulins in solubility but γ-livetin was unstable and this loss of solubility has, so far, prevented its characterization. Molecular weights determined by light scattering, osmotic pressure, and Archibald sedimentation procedure yielded respectively: 8.7, 7.8, and 6.7 × 104 for α-livetin, and 4.8, 5.0, and4.5 × 104 for β-livetin. Under suitable conditions of sedimentation and electrophoresis, egg yolk has been shown to contain three components having the same behavior as the three livetins of the water-soluble fraction.


Sign in / Sign up

Export Citation Format

Share Document