Metabolic enhancement of 2,3′,4,4′,5-pentachlorobiphenyl (CB118) using cytochrome P450 monooxygenase isolated from soil bacterium under the presence of perfluorocarboxylic acids (PFCAs) and the structural basis of its metabolism

Chemosphere ◽  
2018 ◽  
Vol 210 ◽  
pp. 376-383 ◽  
Author(s):  
Erika Goto ◽  
Yuki Haga ◽  
Makoto Kubo ◽  
Toshimasa Itoh ◽  
Chie Kasai ◽  
...  
2010 ◽  
Vol 89 (5) ◽  
pp. 1475-1485 ◽  
Author(s):  
Anett Schallmey ◽  
Gijs den Besten ◽  
Ite G. P. Teune ◽  
Roga F. Kembaren ◽  
Dick B. Janssen

2014 ◽  
Vol 99 (7) ◽  
pp. 3081-3091 ◽  
Author(s):  
Lian-Hua Xu ◽  
Haruo Ikeda ◽  
Ling Liu ◽  
Takatoshi Arakawa ◽  
Takayoshi Wakagi ◽  
...  

Author(s):  
Sheng Dong ◽  
Jingfei Chen ◽  
Xingwang Zhang ◽  
Fei Guo ◽  
Li Ma ◽  
...  

Selective oxidation of C-H bonds in alkylphenols holds great significance for not only structural derivatization in pharma- and bio-manufacturing but also biological degradation of these toxic chemicals in environmental protection. A unique chemomimetic biocatalytic system using enzymes from a p-cresol biodegradation pathway has recently been developed. As the central biocatalyst, the cytochrome P450 monooxygenase CreJ oxidizes diverse p- and m-alkylphenyl phosphates with perfect stereoselectivity at different efficiencies. However, the mechanism of regio- and stereoselectivity of this chemomimetic biocatalytic system remained unclear. Here, using p- and m-ethylphenyl substrates, we elucidate the CreJ-catalyzed key steps for selective oxidations. The crystal structure of CreJ in complex with m-ethylphenyl phosphate was solved and compared with its complex structure with p-ethylphenyl phosphate isomer. The results indicate that the conformational changes of substrate-binding residues are slight, while the substrate promiscuity is achieved mainly by the available space in the catalytic cavity. Moreover, the catalytic preferences of regio- and stereoselective hydroxylation for the two ethylphenyl substrates is explored by molecular dynamics simulations. The ethyl groups in the complexes display different flexibility, and the distances of the active oxygen to Hpro-S and Hpro-R of methylene agree with the experimental stereoselectivity. The regioselectivity can be explained by the distances and bond dissociation energy. These results provide not only the mechanistic insights of CreJ into its regio- and stereoselectivity but also the structural basis for further P450 enzyme design and engineering. Importance The key cytochrome P450 monooxygenase CreJ showed excellent regio- and stereoselectivity in the oxidation of various alkylphenol substrates. C-H bond functionalization of these toxic alkylphenols holds great significance both for biological degradation of these environmental chemicals and production of value-added structural derivatives in pharmaceutical and biochemical industries. Our results, combined with in vitro enzymatic assays, crystal structure determination of enzyme-substrate complex, and molecular dynamics simulations, provide not only significant mechanism elucidation of the regio- and stereoselective catalyzation mediated by CreJ, but also the promising directions for the future engineering efforts of this enzyme towards more useful products. It also has great extendable potentials to couple this multifunctional P450 biocatalyst with other post modifying enzymes (e.g. hydroxyl based glycosylase) to access more alkylphenol derived high-value chemicals through environment-friendly biocatalysis and biotransformation.


2021 ◽  
Author(s):  
Ansgar Bokel ◽  
Michael C. Hutter ◽  
Vlada B. Urlacher

Engineered cytochrome P450 monooxygenase CYP154E1 enables the effective synthesis of the potential antidepressant (2R,6R)-hydroxynorketamine via N-demethylation and regio- and stereoselective hydroxylation of (R)-ketamine.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Erin M. Ostrem Loss ◽  
Mi-Kyung Lee ◽  
Ming-Yueh Wu ◽  
Julia Martien ◽  
Wanping Chen ◽  
...  

ABSTRACT Soil-dwelling fungal species possess the versatile metabolic capability to degrade complex organic compounds that are toxic to humans, yet the mechanisms they employ remain largely unknown. Benzo[a]pyrene (BaP) is a pervasive carcinogenic contaminant, posing a significant concern for human health. Here, we report that several Aspergillus species are capable of degrading BaP. Exposing Aspergillus nidulans cells to BaP results in transcriptomic and metabolic changes associated with cellular growth and energy generation, implying that the fungus utilizes BaP as a growth substrate. Importantly, we identify and characterize the conserved bapA gene encoding a cytochrome P450 monooxygenase that is necessary for the metabolic utilization of BaP in Aspergillus. We further demonstrate that the fungal NF-κB-type velvet regulators VeA and VelB are required for proper expression of bapA in response to nutrient limitation and BaP degradation in A. nidulans. Our study illuminates fundamental knowledge of fungal BaP metabolism and provides novel insights into enhancing bioremediation potential. IMPORTANCE We are increasingly exposed to environmental pollutants, including the carcinogen benzo[a]pyrene (BaP), which has prompted extensive research into human metabolism of toxicants. However, little is known about metabolic mechanisms employed by fungi that are able to use some toxic pollutants as the substrates for growth, leaving innocuous by-products. This study systemically demonstrates that a common soil-dwelling fungus is able to use benzo[a]pyrene as food, which results in expression and metabolic changes associated with growth and energy generation. Importantly, this study reveals key components of the metabolic utilization of BaP, notably a cytochrome P450 monooxygenase and the fungal NF-κB-type transcriptional regulators. Our study advances fundamental knowledge of fungal BaP metabolism and provides novel insight into designing and implementing enhanced bioremediation strategies.


2015 ◽  
Vol 113 (1) ◽  
pp. 52-61 ◽  
Author(s):  
Rohan Karande ◽  
Linde Debor ◽  
Diego Salamanca ◽  
Fabian Bogdahn ◽  
Karl-Heinrich Engesser ◽  
...  

2010 ◽  
Vol 10 (6) ◽  
pp. 791-791 ◽  
Author(s):  
Inge N.A. Van Bogaert ◽  
Marjan De Mey ◽  
Dirk Develter ◽  
Wim Soetaert ◽  
Erick J. Vandamme

2009 ◽  
Vol 75 (12) ◽  
pp. 4202-4205 ◽  
Author(s):  
Wei Wang ◽  
Feng-Qing Wang ◽  
Dong-Zhi Wei

ABSTRACT A new cytochrome P450 monooxygenase, FcpC, from Streptomyces virginiae IBL-14 has been identified. This enzyme is found to be responsible for the bioconversion of a pyrano-spiro steroid (diosgenone) to a rare nuatigenin-type spiro steroid (isonuatigenone), which is a novel C-25-hydroxylated diosgenone derivative. A whole-cell P450 system was developed for the production of isonuatigenone via the expression of the complete three-component electron transfer chain in an Escherichia coli strain.


Sign in / Sign up

Export Citation Format

Share Document