thermobifida fusca
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 26)

H-INDEX

33
(FIVE YEARS 3)

Proceedings ◽  
2021 ◽  
Vol 66 (1) ◽  
pp. 31
Author(s):  
Sachiko Nakamura ◽  
Norio Kurosawa

Lignocellulosic biomass comprises cellulose, hemicellulose, and lignin and is a potential source of fuels and chemicals. Although this complex biomass is persistent, it can be cooperatively decomposed by a microbial consortium in nature. In this study, a coculture of the moderately thermophilic bacteria Thermobifida fusca and Ureibacillus thermosphaericus was used for biodegradation of rice chaff. The bacterial strains were incubated in modified Brock’s basal salt medium (pH 8.0) supplemented with yeast extract and rice chaff at 50 °C for 7 days. The concentration of reducing sugars and the enzymatic activities of laccase, lignin peroxidase, cellulase, and xylanase in the supernatant of the culture medium were measured every day. The concentrations of reducing sugars in solo cultures of T. fusca and U. thermosphaericus and a mixed culture of the two strains after 7 days of incubation were 0.047, 0.040, and 0.195 mg/mL, respectively, indicating that the decomposition of rice chaff was enhanced in the coculture. Based on the results, it is thought that the lignin surrounding the cellulose was decomposed by laccase and lignin peroxidase secreted from U. thermosphaericus, resulting in cellulose and hemicellulose in the rice chaff being easily decomposed by enzymes from T. fusca.


2021 ◽  
Vol 7 ◽  
Author(s):  
Kiran-Kumar Shivaiah ◽  
Bryon Upton ◽  
Basil J. Nikolau

Acyl-CoA carboxylases (AcCCase) are biotin-dependent enzymes that are capable of carboxylating more than one short chain acyl-CoA substrate. We have conducted structural and kinetic analyses of such an AcCCase from Thermobifida fusca YX, which exhibits promiscuity in carboxylating acetyl-CoA, propionyl-CoA, and butyryl-CoA. The enzyme consists of two catalytic subunits (TfAcCCA and TfAcCCB) and a non-catalytic subunit, TfAcCCE, and is organized in quaternary structure with a A6B6E6 stoichiometry. Moreover, this holoenzyme structure appears to be primarily assembled from two A3 and a B6E6 subcomplexes. The role of the TfAcCCE subunit is to facilitate the assembly of the holoenzyme complex, and thereby activate catalysis. Based on prior studies of an AcCCase from Streptomyces coelicolor, we explored whether a conserved Asp residue in the TfAcCCB subunit may have a role in determining the substrate selectivity of these types of enzymes. Mutating this D427 residue resulted in alterations in the substrate specificity of the TfAcCCase, increasing proficiency for carboxylating acetyl-CoA, while decreasing carboxylation proficiency with propionyl-CoA and butyryl-CoA. Collectively these results suggest that residue D427 of AcCCB subunits is an important, but not sole determinant of the substrate specificity of AcCCase enzymes.


Author(s):  
Carolline Schreiber ◽  
Franklin de Souza ◽  
Paulo de Jesus ◽  
Eduardo Zapp ◽  
Patrícia Brondani

The wastewater that originates from the widespread usage of synthetic dyes in the industry have become a severe environmental problem. Several efforts have been made to develop new types of treatment which are capable of performing the degradation of the dyes from the environment. Within this scope, much attention has been drawn to enzymatic approaches, mainly the ones applying oxidative enzymes, such as peroxidases. A recently discovered superfamily of peroxidases, the so called dye-decolorizing peroxidases (DyPs) is a promising alternative to further improve the efficiency of these processes. In this work, two of these peroxidases (Saccharomonospora viridis (SviDyP) and Thermobifida fusca (TfuDyp)) were tested together with twelve different reactive dyes in order to evaluate the efficiency of degradation and decolorization, leading to good results. When applying the SviDyP enzyme in experiments carried out for 12 h in pH 3, the degradation efficiencies were above 80% for some dyes. The biodegradation efficiency data and cyclic voltammograms were recorded to obtain the redox potential of the chosen dyes and enzymes. In addition, an electrochemical biosensor was used to gauge the genotoxicity of the generated bioproducts. This analysis showed that bioproducts from dye degradation mostly present a lower degree of genotoxicity when compared to the control reactions.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 56
Author(s):  
Wei-Lin Chen ◽  
Jo-Chieh Hsu ◽  
Chui-Li Lim ◽  
Cheng-Yu Chen ◽  
Chao-Hsun Yang

The gene encoding a thermostable β-1,3-glucanase was cloned from Thermobifida fusca and expressed constitutively by Yarrowia lipolytica using plasmid pYLSC1. The expression level of the recombinant β-1,3-glucanase reached up to 270 U/mL in the culture medium. After a treatment with endo-β-N-acetyl-glucosaminidase H, the recombinant protein appeared as a single protein band, with a molecular size of approximately 66 kDa on the SDS-polyacrylamide gel. The molecular weight was consistent with the size predicted from the nucleotide sequence. The optimum temperature and pH of the transformant β-1,3-glucanase were 60 °C and pH 8.0, respectively. This β-1,3-glucanase was tolerant to 10% methanol, ethanol, and DMSO, retaining 70% activity. The enzyme markedly hydrolyzed Wolfiporia cocos and Pycnoporus sanguineus glucans. The DPPH and ABTS scavenging potential, reducing power and total phenolic contents of these two Polyporaceae hydrolysates, were significantly increased after 18 h of the enzymatic reaction. The present results indicate that T. fusca β-1,3-glucanase from Y. lipolytica transformant (pYLSC1-13g) hydrolyzes W. cocos and P. sanguineus glucans and improves the antioxidant potential of the hydrolysates.


BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 942-953
Author(s):  
Wan-Yu Liao ◽  
Yu-Chun Huang ◽  
Wei-Lin Chen ◽  
Cheng-Yu Chen ◽  
Chao-Hsun Yang

Lignocelluloses are comprised of cellulose, hemicellulose, and lignins, which constitute plant biomass. Since peroxidases can degrade lignins, the authors examined peroxidase Tfu-1649, which is secreted from the thermophilic actinomycetes, Thermobifida fusca BCRC 19214. After cultivating for 48 h, the culture broth accumulated 43.66 U/mL of peroxidase activity. The treatment of four types of lignocellulolytic byproducts, i.e., bagasse, corncob, pin sawdust, and Zizania latifolia Turcz husk, with Tfu-1649 alone increased the total phenolic compounds, with limited reducing sugars, but treatment with xylanase, Tfu-11, and peroxidase Tfu-1649 showed synergistic effects. Hence, the co-operative degradation of lignocelluloses by both peroxidase and xylanase could contribute to biomass decomposition and further applications in the agricultural and environmental industries.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Qilei Dong ◽  
Shuguang Yuan ◽  
Lian Wu ◽  
Lingqia Su ◽  
Qiaoling Zhao ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document