Corrigendum to “Improvement of rice plant productivity by native Cr(VI) reducing and plant growth promoting soil bacteria Enterobacter cloacae” [Chemosphere 240 (2020) 124895]

Chemosphere ◽  
2020 ◽  
Vol 238 ◽  
pp. 125011
Author(s):  
Swati Pattnaik ◽  
Debasis Dash ◽  
Swati Mohapatra ◽  
Matrujyoti Pattnaik ◽  
Amit K. Marandi ◽  
...  
Chemosphere ◽  
2020 ◽  
Vol 240 ◽  
pp. 124895 ◽  
Author(s):  
Swati Pattnaik ◽  
Debasis Dash ◽  
Swati Mohapatra ◽  
Matrujyoti Pattnaik ◽  
Amit K. Marandi ◽  
...  

Biology ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 381
Author(s):  
Elisa Gamalero ◽  
Bernard R. Glick

Plant-parasitic nematodes have been estimated to annually cause around US $173 billion in damage to plant crops worldwide. Moreover, with global climate change, it has been suggested that the damage to crops from nematodes is likely to increase in the future. Currently, a variety of potentially dangerous and toxic chemical agents are used to limit the damage to crops by plant-parasitic nematodes. As an alternative to chemicals and a more environmentally friendly means of decreasing nematode damage to plants, researchers have begun to examine the possible use of various soil bacteria, including plant growth-promoting bacteria (PGPB). Here, the current literature on some of the major mechanisms employed by these soil bacteria is examined. It is expected that within the next 5–10 years, as scientists continue to elaborate the mechanisms used by these bacteria, biocontrol soil bacteria will gradually replace the use of chemicals as nematicides.


2001 ◽  
Vol 47 (8) ◽  
pp. 698-705 ◽  
Author(s):  
Saleema S Saleh ◽  
Bernard R Glick

The plant growth-promoting bacteria Enterobacter cloacae CAL2 and UW4 were genetically transformed with a multicopy plasmid containing an rpoS or gacS gene from Pseudomonas fluorescens. The transformed strains were compared with the nontransformed strains for growth, indoleacetic acid (IAA) production, antibiotic production, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, siderophore production, cell morphology, and the ability to promote canola root elongation. All transformed strains had a longer lag phase, were slower in reaching stationary phase, and attained a higher cell density than the nontransformed strains. Transformation resulted in cells that were significantly shorter than the nontransformed cells. The transformed strains also produced significantly more IAA than the nontransformed strains. Introduction of rpoS or gacS from Pseudomonas fluorescens was associated with a reduction in the production of both antibiotics, 2,4-diacetylphloroglucinol and mono-acetylphloroglucinol, produced by Enterobacter cloacae CAL2. With Enterobacter cloacae CAL2, plasmid-borne rpoS, but not gacS, increased the level of ACC deaminase activity, while introduction of rpoS in Enterobacter cloacae UW4 caused a decrease in ACC deaminase activity. Neither gacS nor rpoS significantly affected the level of siderophores synthesized by either bacterial strain. Overproduction of either GacA or RpoS in Enterobacter cloacae CAL2 resulted in a significant increase in the root lengths of canola seedlings when seeds were treated with the bacteria, and overproduction of RpoS caused an increase in canola shoot as well as root lengths.Key words: plant growth-promoting bacteria, canola, ethylene, ACC deaminase, GacS, RpoS, indoleacetic acid, siderophores, antibiotics.


Sign in / Sign up

Export Citation Format

Share Document