colonization ability
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 31)

H-INDEX

26
(FIVE YEARS 4)

Author(s):  
Carina Valente ◽  
Ana R. Cruz ◽  
Adriano O. Henriques ◽  
Raquel Sá-Leão

Streptococcus pneumoniae is a human pathogen responsible for high morbidity and mortality worldwide. Disease is incidental and is preceded by asymptomatic nasopharyngeal colonization in the form of biofilms. Simultaneous colonization by multiple pneumococcal strains is frequent but remains poorly characterized. Previous studies, using mostly laboratory strains, showed that pneumococcal strains can reciprocally affect each other’s colonization ability. Here, we aimed at developing a strategy to investigate pneumococcal intra-species interactions occurring in biofilms. A 72h abiotic biofilm model mimicking long-term colonization was applied to study eight pneumococcal strains encompassing 6 capsular types and 7 multilocus sequence types. Strains were labeled with GFP or RFP, generating two fluorescent variants for each. Intra-species interactions were evaluated in dual-strain biofilms (1:1 ratio) using flow cytometry. Confocal microscopy was used to image representative biofilms. Twenty-eight dual-strain combinations were tested. Interactions of commensalism, competition, amensalism and neutralism were identified. The outcome of an interaction was independent of the capsular and sequence type of the strains involved. Confocal imaging of biofilms confirmed the positive, negative and neutral effects that pneumococci can exert on each other. In conclusion, we developed an experimental approach that successfully discriminates pneumococcal strains growing in mixed biofilms, which enables the identification of intra-species interactions. Several types of interactions occur among pneumococci. These observations are a starting point to study the mechanisms underlying those interactions.


2021 ◽  
Author(s):  
Huanhuan Fu ◽  
Weiliang Kong ◽  
Feifei Chen ◽  
Wanhui Liu ◽  
Qianru Xu ◽  
...  

Abstract Burkholderia pyrrocinia JK-SH007 is a high-potential biological control strain. We changed the composition of medium during the fermentation of JK-SH007 cells and induced these cells to form a biofilm. In this experiment, we deeply studied the biofilm physical and chemical properties. The new fermentation process improves the colonization ability of JK-SH007 and promotes poplar growth. In addition, the biofilm bacterial concentration reached 1010 CFU/mL, the cell dry weight increased over that of a control by 3-10-fold, there was increased environmental stress resistance and IAA secretion, and progeny cells retained resistance to adverse environments. The new biofilm cells were applied to poplar. The JK-SH007 colonization ability was improved in the biofilm, and some bacteria existed as biofilms (cell clusters) in poplar, which would promote forming a dominant niche. Biofilm JK-SH007 has an increased affinity for poplar during colonization and promotes poplar growth under hydroponic conditions, proving the reliability of the new morphology for treating poplar ulcer disease. This work further provides a theoretical basis for commercially producing JK-SH007.


2021 ◽  
Vol 2 ◽  
pp. 111-116
Author(s):  
Evan Purnama Ramdan ◽  
Efi Toding Tondok ◽  
Suryo Wiyono ◽  
Sri Hendrastuti Hidayat ◽  
Widodo Widodo

Endophytic fungi are fungi that live in healthy plant tissues without causing disease symptoms. Endophytic fungi in chili have been tested as both biocontrol agents and growth promoters, but their colonization has not been reported. Therefore, this study aimed to determine the level of colonization of endophytic fungi and its effect on the growth of chili seedlings. A total of 8 endophytic fungi were prepared at a density of 2.8 × 106 CFU mL-1. Then the endophytic fungus was inoculated 2 times, first by soaking the seeds, and secondly by watering the endophytic fungus suspension on chili seedlings aged 3 weeks after sowing. Endophytic fungi were re-isolated on chili seedlings that were 4 weeks old after sowing on the roots and stems to determine their colonization ability. Chili seeds were then maintained for up to 4 weeks after transplanting to observe their growth. The results showed that the endophytic fungal colonization ranged from 26-60% on the chili root, while at the base of the stem it was 20-40% with a different pattern of colonization distribution. In addition, endophytic fungus colonization was also able to increase the shoot height and root length of chili seedlings.


2021 ◽  
Author(s):  
Aurélien Estarague ◽  
François Vasseur ◽  
Kevin Sartori ◽  
Cristina Bastias ◽  
Denis Cornet ◽  
...  

Background and Aims: Determining within-species large-scale variation in phenotypic traits is central to elucidate the drivers of species ranges. Intraspecific comparisons offer the opportunity to understand how trade-offs and biogeographical history constrain adaptation to contrasted environmental conditions. Here we test whether functional traits, ecological strategies and phenotypic plasticity in response to abiotic stress vary along a latitudinal or a center- margins gradient within the native range of Arabidopsis thaliana. Methods: The phenotypic outcomes of plant adaptation at the center and margins of its geographic range were experimentally examined in 30 accessions from southern, central and northern Europe. The variation of traits related to stress tolerance, resource use, colonization ability as well as survival and fecundity was determined in response to high temperature (34C) or frost (- 6C), in combination with response to water deficit. Key Results: Both evidence for a latitudinal and a center-margins differentiation was found. Traits related to the acquisitive/conservative strategy trade-off varied along a latitudinal gradient. Northern accessions presented a greater survival to stress than central and southern accessions. Traits related to a colonization-competition trade-off followed a center-margin differentiation. Central accessions presented a higher phenotypic plasticity and trait values associated with a higher colonization ability than northern and southern accessions which instead had a higher competition ability. Conclusions: Intraspecific phenotypic variation helps us understand how the distribution range has evolved in Arabidopsis thaliana, which is shaped both by climate and the population migratory history. We advocate to consider intraspecific trait variation in species range studies instead of species means only as classically done in macroecology.


2021 ◽  
Vol 8 ◽  
Author(s):  
Marianna Roselli ◽  
Fausta Natella ◽  
Paola Zinno ◽  
Barbara Guantario ◽  
Raffaella Canali ◽  
...  

A large subset of fermented foods act as vehicles of live environmental microbes, which often contribute food quality assets to the overall diet, such as health-associated microbial metabolites. Foodborne microorganisms also carry the potential to interact with the human gut microbiome via the food chain. However, scientific results describing the microbial flow connecting such different microbiomes as well as their impact on human health, are still fragmented. The aim of this systematic review is to provide a knowledge-base about the scientific literature addressing the connection between foodborne and gut microbiomes, as well as to identify gaps where more research is needed to clarify and map gut microorganisms originating from fermented foods, either traditional or added with probiotics, their possible impact on human gut microbiota composition and to which extent foodborne microbes might be able to colonize the gut environment. An additional aim was also to highlight experimental approaches and study designs which could be better standardized to improve comparative analysis of published datasets. Overall, the results presented in this systematic review suggest that a complex interplay between food and gut microbiota is indeed occurring, although the possible mechanisms for this interaction, as well as how it can impact human health, still remain a puzzling picture. Further research employing standardized and trans-disciplinary approaches aimed at understanding how fermented foods can be tailored to positively influence human gut microbiota and, in turn, host health, are therefore of pivotal importance.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 898
Author(s):  
Fani Ntana ◽  
Wajid W. Bhat ◽  
Sean R. Johnson ◽  
Hans J. L. Jørgensen ◽  
David B. Collinge ◽  
...  

Interactions between plant-associated fungi and their hosts are characterized by a continuous crosstalk of chemical molecules. Specialized metabolites are often produced during these associations and play important roles in the symbiosis between the plant and the fungus, as well as in the establishment of additional interactions between the symbionts and other organisms present in the niche. Serendipita indica, a root endophytic fungus from the phylum Basidiomycota, is able to colonize a wide range of plant species, conferring many benefits to its hosts. The genome of S. indica possesses only few genes predicted to be involved in specialized metabolite biosynthesis, including a putative terpenoid synthase gene (SiTPS). In our experimental setup, SiTPS expression was upregulated when the fungus colonized tomato roots compared to its expression in fungal biomass growing on synthetic medium. Heterologous expression of SiTPS in Escherichia coli showed that the produced protein catalyzes the synthesis of a few sesquiterpenoids, with the alcohol viridiflorol being the main product. To investigate the role of SiTPS in the plant-endophyte interaction, an SiTPS-over-expressing mutant line was created and assessed for its ability to colonize tomato roots. Although overexpression of SiTPS did not lead to improved fungal colonization ability, an in vitro growth-inhibition assay showed that viridiflorol has antifungal properties. Addition of viridiflorol to the culture medium inhibited the germination of spores from a phytopathogenic fungus, indicating that SiTPS and its products could provide S. indica with a competitive advantage over other plant-associated fungi during root colonization.


2021 ◽  
Author(s):  
Jun Feng ◽  
Yili Qian ◽  
Zhichao Zhou ◽  
Sarah Ertmer ◽  
Eugenio Vivas ◽  
...  

Polysaccharide utilization loci (PULs) in the human gut microbiome have critical roles in shaping human health and ecological dynamics. We develop a CRISPR-FnCpf1-RecT genome-editing tool to study 23 PULs in the highly abundant species B. uniformis (BU). We identify the glycan-degrading functions of multiple PULs and elucidate transcriptional coordination between PULs that enables the population to adapt to the loss of PULs. Exploiting a pooled BU mutant barcoding strategy, we demonstrate that the in vitro fitness and the colonization ability of BU in the murine gut is enhanced by deletion of specific PULs and modulated by glycan availability. We show that BU PULs can mediate complex glycan-dependent interactions with butyrate producers that depend on the mechanism of degradation and the butyrate producer glycan utilizing ability. In sum, PULs are major determinants of community dynamics and butyrate production and can provide a selective advantage or disadvantage depending on the nutritional landscape.


2021 ◽  
Vol 9 ◽  
Author(s):  
José Carlos García-Gómez ◽  
Marta Florido ◽  
Liliana Olaya-Ponzone ◽  
Juan Sempere-Valverde ◽  
César Megina

The present study constitutes the first evaluation of the space colonization strategies performed by Rugulopteryx okamurae when co-occurring with the resident macroalgal community in the introduced areas. Since the first apparition of the nonindigenous macroalga in the Strait of Gibraltar, its high propagation capacity together with its colonization ability has enhanced the establishment success of the species in detriment of the resident biota. In this study, we carried out observational surveys during 2017–2020 in order to assess the coverage levels of R. okamurae on different lighting conditions, surface orientations, and substrata types (artificial and natural). Results revealed that, beyond the high percent coverages already reported at illuminated and semi-illuminated natural rocky habitats, R. okamurae is able to settle on a wide variety of artificial substrata. The settlement performance of the species was also investigated and different mechanisms underlying the space colonization were proposed. Thus, R. okamurae was observed interacting with 43 resident macroalgal species at generally illuminated rocky habitats of the northern Strait coasts. Six colonization mechanisms were proposed for spatial growth scenarios. Overall, results pointed out that, in most of the cases where the invasive species co-occur with the resident community, R. okamurae would be favored as regards spatial growth success. Competitive interactions and environmental factors which influence results obtained must be addressed in order to fully predict impacts on resident communities. Moreover, together with previous scientific works, overall data provided in this study highlight the need to urgent implement management measures focused on habitats susceptible to be invaded, as well as studies on the ecology and dispersal vectors of R. okamurae in the Strait of Gibraltar and adjacent areas.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1113
Author(s):  
Anastasios Samaras ◽  
Efstathios Roumeliotis ◽  
Panagiota Ntasiou ◽  
George Karaoglanidis

Bacillus subtilis MBI600 (Bs MBI600) is a recently commercialized plant-growth-promoting rhizobacterium (PGPR). In this study, we investigated the effects of Bs MBI600 on the growth of tomato and its biocontrol efficacy against three main soilborne tomato pathogens (Rhizoctonia solani, Pythium ultimum, and Fusarium oxysporum f.sp. radicis-lycopersici-Forl). Furthermore, the root colonization ability of the Bs MBI600 strain on tomato roots was analyzed in vivo with a yellow fluorescence protein (yfp)-labeled strain, revealing strong colonization ability, which was affected by the root growth substrate. The application of Bs MBI600 on tomato plants resulted in significant increases in shoot and root lengths. Transcriptional activation of two auxin-related genes (SiPin6 and SiLax4) was observed. Single applications of Bs MBI600 on inoculated tomato plants with pathogens revealed satisfactory control efficacy compared to chemical treatment. Transcriptomic analysis of defense-related genes used as markers of the salicylic acid (SA) signaling pathway (PR-1A and GLUA) or jasmonic acid/ethylene (JA/ET) signaling pathway (CHI3, LOXD, and PAL) showed increased transcription patterns in tomato plants treated with Bs MBI600 or Forl. These results indicate the biochemical and molecular mechanisms that are activated after the application of Bs MBI600 on tomato plants and suggest that induction of systemic resistance (ISR) occurred.


Author(s):  
Liqi Zhu ◽  
Chen Zhu ◽  
Shuyang Cao ◽  
Quan Zhang

It has been well documented that cytolethal distending toxin (CDT) from Helicobacter hepaticus (H. hepaticus), Campylobacter jejuni (C. jejuni) and other Gram-negative intestinal pathogens is linked to the inflammatory bowel disease (IBD). However, the mechanisms underlying the progression of H. hepaticus induced colitis remains unclear. In this study, male B6.129P2-IL10tm1Cgn/J mice were infected by H. hepaticus and ΔCdtB H. hepaticus for 6, 12, 18, and 24 weeks. Histopathology, H. hepaticus colonization levels, expression of inflammatory cytokines, signaling pathways, and content of NO in proximal colon were examined. We found that Cytolethal distending toxin subunit B (CdtB) deletion had no influence on colonization ability of H. hepaticus in colon of B6.129P2-IL10tm1cgn/J mice, and there was no significant difference in abundance of colonic H. hepaticus over infection duration. H. hepaticus aggravated rectocele and proximal colonic inflammation, especially at 24 WPI, while ΔCdtB H. hepaticus could not cause significant symptom. Furthermore, mRNA levels of Il-6, Tnf-α, Il-1β, and iNOS significantly increased in the proximal colon of H. hepaticus-infected mice compared to ΔCdtB H. hepaticus infected group from 12 WPI to 24 WPI. In addition, the elevated content of NO and activated Stat3 and Jak2 in colon were observed in H. hepaticus infected mice. These data demonstrated that CdtB promote colitis development in male B6.129P2-IL10tm1Cgn/J mice by induction of inflammatory response and activation of Jak-Stat signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document